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Abstract5

In this paper, we deal with inconsistency resolution in qualitative constraint networks (QCNs). This6

type of networks allows one to represent and reason about spatial or temporal information in a7

natural, human-like manner, e.g., by expressing relations of the form x {is north of ∨ is east of} y.8

On the other hand, inconsistency resolution involves maximizing the amount of information that is9

consistent in a knowledge base; in the context of QCNs, this translates to maximizing the number of10

constraints that can be satisfied, via obtaining a qualitative solution (scenario) of the QCN that11

ignores/violates as few of the original constraints as possible. To this end, we present two novel12

approaches: a greedy constraint-based and an optimal Partial MaxSAT-based one, with a focus on13

the former due to its simplicity. Specifically, the greedy technique consists in adding the constraints14

of a QCN to a new, initially empty network, one by one, all the while filtering out the ones that fail15

the satisfiability check. What makes or breaks this technique is the ordering in which the constraints16

will be processed to saturate the empty QCN, and for that purpose we use many different strategies17

to form a portfolio-style implementation. The Partial MaxSAT-based approach is powered by Horn18

theory-based maximal tractable subsets of relations. Finally, we compare the greedy approach19

with the optimal one, commenting on the trade-off between obtaining repairs that are optimal and20

obtaining repairs in a manner that is fast, and make our source code available for anyone to use.21
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1 Introduction30

Qualitative Spatio-Temporal Reasoning (QSTR) is a rich symbolic AI framework that31

deals with representing and reasoning about abstract, qualitative spatio-temporal inform-32

ation [8, 15]. Specifically, QSTR allows one to spatially or temporally relate one object33

with another object or oneself by using everyday, human-like natural language descriptions,34

and perform reasoning with those descriptions; as an example, consider a relation of the35

form x {is north of ∨ is east of} y, which abstracts from numerical information and yet36

is very intuitive. Such QSTR descriptions or relations, and disjunctions thereof, can be37

modeled as a qualitative constraint network (QCN), a simplified example of which is provided38

in Figure 1a. Spatial or temporal information in the QSTR framework can, in general,39

pertain to any spatial or temporal aspects in the physical world. However, the literature40

has been deeply invested in point/interval-based calculi, with Allen’s Interval Algebra being41

the most representative example [1], as intervals can be used to represent and reason about42

anything from durative actions in planning or tasks in robotics [18] to temporal abstractions43

in multivariate time series classification [17], among other applications; the interested reader44

is invited to explore the discussion in [26, 28, 9, 3].45
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(a) An inconsistent plan as a simplified QCN.
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(b) An optimal scenario of the simplified QCN.

Figure 1 An illustration of the MAX-QCN problem of a qualitative constraint network (QCN) [6]
and the terminology used here; the QCN in Figure 1a is inconsistent, and one solution of the
MAX-QCN problem, viz., an optimal scenario, is depicted in Figure 1b, where taskx {before} taskz

is the only relation that does not satisfy the respective constraint in Figure 1a..

Context & Motivation46

In this paper, we focus on the problem of maximizing satisfiability in a qualitative constraint47

network, formally called the MAX-QCN problem [6]. Specifically, given a QCN N , the48

MAX-QCN problem is the problem of obtaining a spatial or temporal configuration that49

maximizes the number of satisfied constraints in N ; see also Figure 1 for an example. The50

motivation behind studying this problem lies in the fact that representing spatial or temporal51

information may inevitably lead to inconsistencies, due to e.g. human error and/or inaccurate52

classifiers. As illustration, timetabling is an instance of scheduling where inconsistencies53

can naturally form due to the lack of resources for certain tasks, among other reasons [14].54

Specifically, in timetabling the goal is to associate temporal intervals with a number of tasks55

requiring limited resources. In the context of a hospital, for example, an inconsistency can56

occur when two surgeons are allocated the same operating room in overlapping temporal57

intervals; the inconsistency must then be repaired by considering available temporal intervals58

and preferences alike, and minimizing changes so as to perturb the structure of the timetable59

as little as possible. In the broader context of neuro-symbolic AI architectures [13], classifiers60

may construct inconsistent spatio-temporal knowledge bases due to inaccurate predictions,61

and minimizing inconsistency (i.e., maximizing satisfiability) is an essential step of logical62

abduction (or other type of reasoning) in the neuro-symbolic cycle, see, e.g., Figure 1 in [31].63

State of the Art & Contribution64

The state of the art in solving the MAX-QCN problem with respect to constraints and SAT65

encodings consists of the works in [6] and in [7], respectively. Specifically, both of these66

approaches try to obtain a refinement of the input QCN that maximizes the number of67

satisfied constraints in the QCN. In doing so, they are trying to solve two problems of68

different nature at the same time: extracting a scenario of the QCN, whilst ensuring that69

the extracted scenario is optimal. This is particularly crippling for the performance of the70

constraint-based approach in [6], as, should the constraint not be part of an optimal scenario71

in the end, taking a refinement of it in the beginning might create a huge branch in the72

search tree that is useless to explore. The clause learning of the SAT-based approach in [7]73

circumvents this issue, but, on the other hand, [7] does not exploit tractability properties for74

QCNs, viz., Horn theories and/or maximal tractable subsets of relations [22]; nevertheless,75

it significantly outperforms [6]. Here, with respect to the previous discussion, we make the76

following contributions:77

(i) We offer a greedy constraint-based approach for tackling the MAX-QCN problem that78

treats the constraints of the input QCN in whole and, hence, may avoid—to a relatively79
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Figure 2 A representation of the 13 base relations b of IA, each one relating two potential intervals
x and y as in x b y; the converse of b, i.e., b−1, can be denoted by bi and is omitted in the figure.

greater extent—redundant exploration of search space;80

(ii) We introduce one of the most compact to date Partial MaxSAT encodings for the81

MAX-QCN problem by extending the SAT encoding of [20] (see also [30]), fully utilizing82

tractability properties (alongside chordal completions of the constraint graphs of QCNs);83

(iii) We pit the two approaches against each other in an experimental evaluation, and84

comment on the trade-off between obtaining repairs in an inconsistent QCN in a way85

that is optimal and coming close to a solution of the MAX-QCN problem in a manner86

that is fast, making our source code available for any interested researcher to use.87

Organization88

The rest of the paper is organized as follows. In Section 2 we provide definitions and89

notations regarding QSTR and the MAX-QCN problem that are necessary for following and90

understanding the paper. Then, Sections 3–5 expand on the contribution points (i)–(iii),91

respectively, that were listed earlier. Finally, in Section 6 we conclude and give some directions92

for future work.93

2 Preliminaries94

A binary qualitative spatial or temporal constraint language is based on a finite set B of jointly95

exhaustive and pairwise disjoint relations, called base relations [15] and defined over an infinite96

domain D (e.g., R). The base relations of a particular qualitative constraint language can be97

used to represent the definite knowledge between any two of its entities with respect to the98

level of granularity provided by the domain D. The set B contains the identity relation Id, and99

is closed under the converse operation (−1). Indefinite knowledge can be specified by a union100

of possible base relations, and is represented by the set containing them. Hence, 2B represents101

the total set of relations. The set 2B is equipped with the usual set-theoretic operations of102

union and intersection, the converse operation, and the weak composition operation denoted103

by the symbol ⋄ [15]. For all r ∈ 2B, we have that r−1 =
⋃

{b−1 | b ∈ r}. The weak104

composition (⋄) of two base relations b, b′ ∈ B is defined as the smallest (i.e., most restrictive)105

relation r ∈ 2B that includes b ◦ b′, or, formally, b ⋄ b′={b′′ ∈ B | b′′∩(b ◦ b′) ̸= ∅}, where106

b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is the (true) composition of107

b and b′. For all r, r′ ∈ 2B, we have that r ⋄ r′ =
⋃

{b ⋄ b′ | b ∈ r, b′ ∈ r′}.108

As illustration, consider the well-known qualitative temporal constraint language of109

Interval Algebra (IA) [1]. IA considers time intervals on the real line, and the set of base110

relations B = {eq (= Id), p, pi, m, mi, o, oi, s, si, d, di, f , fi} to encode knowledge about111

the temporal relations between such intervals, as described in Figure 2.112

Representing and reasoning about qualitative spatio-temporal information pertaining to113

a set of base relations B can be facilitated by a qualitative constraint network (QCN):114

▶ Definition 1. A qualitative constraint network (QCN) is a tuple (V, C) where:115

V = {v1, . . . , vn} is a non-empty finite set of variables (representing entities in D);116

and C is a mapping C : V × V → 2B such that, ∀v ∈ V , C(v, v) = {Id}, and, ∀v, v′ ∈ V ,117

C(v, v′) = (C(v′, v))−1.118

TIME 2023
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(a) A satisfiable QCN N .
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(c) A scenario S of N .

Figure 3 Figurative examples of QCN terminology using Interval Algebra (IA).

An example QCN of IA is shown in Figure 3a; for conciseness, converse relations or Id119

loops are not shown in the figure.120

▶ Definition 2. Let N = (V, C) be a QCN (Figure 3a), then:121

a solution of N is a mapping σ : V → D such that, ∀(u, v) ∈ V × V , ∃b ∈ C(u, v) such122

that (σ(u), σ(v)) ∈ b; and N is satisfiable iff it admits a solution (see Figure 3b);123

a sub-QCN (also known as refinement) N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′)124

such that, ∀u, v ∈ V , C ′(u, v) ⊆ C(u, v);125

N is atomic iff, ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation {b} with b ∈ B;126

a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 3c);127

the constraint graph of N , denoted by G(N ), is the graph (V, E) where {u, v} ∈ E iff128

C(u, v) ̸= B and u ̸= v;129

for V ′ ⊆ V , N ↓V ′ denotes N restricted to V ′;130

N is denoted by N⊤ when each of its constraints is universal, i.e., iff, ∀v, v′ ∈ V with131

v ̸= v′, C(v, v′) = B.132

The MAX-QCN problem133

The MAX-QCN problem has been introduced in the context of QSTR in [6]. Given a QCN N134

over a set of variables V , the MAX-QCN problem is the problem of finding a scenario over V135

that maximizes the number of satisfied constraints in N , or, equivalently, the problem of136

finding a scenario over V that minimizes the number of unsatisfied constraints in N . Such137

scenarios are called optimal scenarios of N . Clearly, if a QCN N is satisfiable, any scenario138

of N is also an optimal scenario of N . The reader is kindly asked to revisit Figure 1 in the139

introduction for a simplified example of the MAX-QCN problem and a solution of it. Solving140

the MAX-QCN problem is clearly at least as difficult as solving the satisfiability checking141

problem of a QCN, which is NP-hard in general for most calculi [8].142

3 Greedy Constraint-based Approach143

In this section, we present a greedy approach to come close to, or even exactly identify, a144

maximum satisfiable subset of constraints of an original input QCN N = (V, C) and, hence,145

tackle the MAX-QCN problem. This approach is presented in Algorithm 1, and it consists in146

consistently saturating a universal QCN (lines 4–13) with as many constraints as possible147

from N , by using and iterating various different orderings of the constraints of N (line 5).148

Given a QCN N = (V, C), with E = E(G(N )) denoting the set of edges in its constraint149

graph, Greedus runs in O(|E| · β) time, where β is the runtime of a SAT oracle call. The150

SAT oracle here can be any solver that can solve the satisfiability checking problem of a151

QCN, be it SAT- or qualitative constraint-based; in our implementation of the algorithm,152
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Algorithm 1 greedus(N ,A)

in : A QCN N = (V, C) and a set A of bijections α : E → {0, 1, . . . , |E| − 1}, where
E = E(G(N )) (i.e., roughly, a set of orderings of the constraints in N )

out : A subset p ⊆ E(G(N )) corresponding to feasible constraints in N
1 P ← ∅;
2 foreach α ∈ A do
3 p ← ∅;
4 N ′ = (V, C′) ← N⊤;
5 for i from 0 to |E(G(N ))| − 1 do
6 {u, v} ← α−1(i);
7 C′(u, v) ← C(u, v);
8 C′(v, u) ← C(v, u);
9 if SAT(N ′) then

10 p← p ∪ {{u, v}};
11 else
12 C′(u, v) ← B;
13 C′(v, u) ← B;
14 P ← P ∪ {p};
15 return p ∈ arg maxp′∈P (|p′|);

we opted for a qualitative constraint-based one, since it made the implementation of the153

algorithm more straightforward. Of course, we assume here that the size of the set A of154

some orderings of the constraints in N is upper bounded by a small constant k that is equal155

to the number of different strategies that will be used to obtain these orderings in the first156

place (a discussion on such strategies follows immediately after); this would be naturally the157

case, as exploring all possible orderings would defeat the purpose of being greedy. Finally, it158

is important to know that each iteration of the loop in line 5 can be run in parallel, as the159

calculation of a satisfiable subset of constraints p by the end of an iteration is completely160

independent to any other such p; in the end, the largest such p is returned. However, in our161

implementation we maintained the sequential nature of the algorithm.162

Constraint Ordering Strategies163

Given a QCN N = (V, C), the effectiveness of Greedus relies heavily on the set A of some164

orderings of the constraints in N that will be provided as part of its input, as this set has a165

direct effect on the quality of the satisfiable subset of constraints that will be obtained in the166

end. It is worth noting that the efficiency of Greedus does not rely all that much on A, as167

the algorithm will go through all constraints anyway (of course, in the sequential version of168

the algorithm, some optimizations can be achieved by passing information from one iteration169

to the next one, to early stop the loop, for example).170

Intuition: We would like to delay the encounter of a constraint that causes inconsistency171

(line 9 in the algorithm) for as long as possible, as this should allow us to maximize the172

size of the set of satisfiable constraints. So, intuitively, we should order constraints from173

more permissive to less permissive, as this should increase our chances of a relatively more174

successful outcome. In the sequel, we list ways to assess the permissiveness of a constraint.175

In qualitative constraint-based reasoning, the satisfiability checking of a QCN is done via176

the use of a backtracking algorithm [22], where the selection of the next constraint to process177

follows the minimum remaining values principle in traditional constraint programming [23]178

(commonly known as MRV); specifically, heuristics are used to select the more restrictive179

TIME 2023
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constraints first, as this should help the algorithm to explore a relatively sparser search180

tree. Here, we simply reverse the use of such constraint selection heuristics, making small181

adaptations where necessary, which we explain in what follows.182

In sum, among other heuristics, we use the local model counting-based heuristics of [25],183

as well as the weighting-based ones of [27, 21], to order the constraints from more permissive184

to less permissive (or, equivalently, from less restrictive to more restrictive).185

First, we need to recall and slightly adapt the definition of a local model from [25].186

▶ Definition 3 (local model, cf. [25]). Given a QCN N = (V, C) and an edge {v, v′} ∈187

E(G(N )), a local model of a base relation b ∈ C(v, v′) is a scenario S = (V ′, C ′) of N ↓V ′ ,188

where V ′ = {v, v′, u} with u ∈ V (V ′ is a triple of variables in V ), and C ′(v, v′) = {b}.189

Now, we are ready to list all of the used constraint ordering strategies in this work. It190

is clear that, given a QCN N = (V, C), an exhaustive application of either of the following191

strategies for each of the (non-universal) constraints of N provides an ordering of the192

constraints of N ; we can then represent those orderings with bijections E → {0, 1, . . . , |E|−1},193

where E = E(G(N )), and form the required set of orderings for Greedus.194

max: choose the constraint that contains the base relation with the most local models.195

min: choose the constraint for which the base relation with the fewest local models has196

the most local models compared to such base relations of the rest of the constraints.197

avg: choose the constraint with the highest average count of local models (i.e., each of198

its base relations contributes a count and we take the average of these counts).199

sum: choose the constraint with the highest cumulative count of local models. (i.e., each200

of its base relations contributes a count and we take the sum of these counts).201

weight: choose the constraint with the largest weight; see, e.g., Figure 9 in [27] (the202

larger the weight, the more permissive the constraint).203

card: choose the constraint whose smallest decomposition into sub-relations of a (maximal)204

tractable subset S ∈ 2B [21] (e.g., the ORD-Horn set for IA [20]) is the largest one.205

card + weight: the card heuristic, with the weight heuristic acting as tie-breaker (this is206

very typical in the literature e.g., [21]).207

random: choose a constraint randomly.208

The reader can note that the aforementioned strategies are very different to one another,209

even contradictory at times (e.g., max and min). In fact, such a mix of different strategies210

ensures that our portfolio-style approach is diverse enough; diversity is an important aspect211

of any portfolio-based method.212

4 Optimal Partial MaxSAT-based Approach213

In this section, we introduce a Partial MaxSAT encoding for the MAX-QCN problem by214

extending the SAT encoding of [20]; we note that the aforementioned encoding pertains to215

the IA calculus, but the approach itself may be adapted to any calculus by using the hard216

clauses to encode a theory of the calculus and the soft ones to encode the constraints of an217

input QCN over that calculus—e.g., a similar encoding exists for RCC8 in [29]. It must be218

noted that, contrary to the approach of [7], which does not take into account a theory of a219

calculus and aims to provide a generic approach that is based solely on the weak composition220

rules of that calculus, our extension may take full advantage of tractability properties for221

QCNs, viz., Horn theory-based maximal tractable subsets of relations [22], and is thus one of222

the most compact encodings for the MAX-QCN problem to date, see also Table 1 in [30].223
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First, we briefly introduce some notions about the Partial MaxSAT problem. A literal is a224

propositional variable or its negation, and a clause is a disjunction of literals. The maximum225

satisfiability problem (MaxSAT) is the problem of finding an assignment that satisfies as226

many clauses of a given set of clauses as possible [12]. Hence, the MAX-QCN problem can227

already be viewed as a version of the MaxSAT problem for QCNs. The Partial MaxSAT228

problem is an extension of the MaxSAT problem defined as follows: an instance Ω of Partial229

MaxSAT [16, 5] is a set of clauses composed of hard and soft clauses, and a solution ω of230

Ω is an assignment that satisfies the hard clauses and maximizes the number of satisfied231

soft clauses. For the MAX-QCN problem, certain hard clauses are necessary to ensure the232

completeness of the approach, in particular, the clauses that pertain to a provided theory of233

a given calculus, as we will demonstrate in the sequel.234

We first introduce our Partial MaxSAT encoding for a given QCN in an abstract way,235

and then give an example based on IA and the SAT encoding in [20]. Given a QCN N =236

(V, C) over some calculus C, the hard clauses in the Partial MaxSAT encoding are the ones237

encoding a theory of C, the set of these clauses being denoted by ThC(N ), and the soft238

clauses in the Partial MaxSAT encoding are the ones encoding the constraints of N , the set239

of these clauses being denoted by InC(N ). Specifically, regarding InC(N ), the soft clauses240

can be viewed as follows (an explanation of the symbols follows immediately after):241

∧
(i,j)∈E(G(N )) s.t. i<j

(rij →
m∧

l=1
cl) (1)242

With respect to Equation (1) above, rij is an auxiliary variable associated with every243

(i, j) ∈ E(G(N )) s.t. i < j, and complementing every clause cl of a CNF formula c1 ∧ c2244

∧ . . . ∧ cm corresponding to the constraint C(i, j) (here, m is some small constant that245

is particular to the CNF encoding of a constraint in a given calculus). The soft part in246

Equation (1) is simply the set of these rij unit clauses: maximizing the number of satisfied247

clauses of the form rij corresponds to maximizing the number of satisfied constraints of the248

form C(i, j).249

Let us ground the presentation so far in IA to facilitate the reader. A Horn theory of IA
can be based on that of partial orders, as is done in [20]. We present this theory as follows:

x ≤ z ∧ z ≤ y → x ≤ y x = y → x ≤ y

x ≤ y ∧ y ≤ x → x = y x = y → y ≤ x

x = y ∧ x ̸= y → ⊥ x ̸= x → ⊥

Then, we consider the usual domain D of IA, which is defined as the set of intervals on the250

real line, i.e., D = {x = (x−, x+) ∈ R × R | x− < x+}, where x− and x+ denote the starting251

point and ending point of an interval x, respectively.252

Given a QCN N = (V, C) over IA, every interval variable x ∈ V can be translated with
regard to the theory of partial orders as follows (remember that, ∀x ∈ V , x− < x+):

x− ≤ x+ ∧ x− ̸= x+

In addition, for all distinct interval variables x, y, z ∈ V , we need to enforce the theory of253

partial orders mentioned earlier and obtain the respective translations for all of their starting254

and ending points (with respect to a chordal completion of E(G(N ))).255

The hard clauses of ThIA(N ) can then be straightforwardly obtained by associating, for
all s ∈ {−, +} × {≤, =} × {−, +}, the propositional variables ps

xy with every pair of interval
variables x, y ∈ V , and retrieving the SAT enconding of the aforementioned translations.

TIME 2023
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For example the formula corresponding to an interval variable (viewed within the theory of
partial orders as above, viz., x− ≤ x+ ∧ x− ̸= x+) is as follows:

p(−,≤,+)
xx ∧ ¬p(−,=,+)

xx

With respect to the soft clauses of InIA(N ), and the SAT encoding of the constraints in256

particular, it can be easily obtained by considering the definition of each base relation of IA257

with respect to the starting and ending points of two intervals, and its subsequent translation258

with regard to the theory of partial orders. For example, the base relation during between259

two intervals x and y is defined as {(x, y) ∈ D × D | y− < x− ∧ x+ < y+}; we already saw260

earlier how < corresponds to ≤ ∧ ̸= with regard to the theory of partial orders, so the261

translation is obvious. By extension, the SAT encoding of composite relations (disjunctions262

of base relations) can be obtained via the disjunction of the SAT encodings of the base263

relations in the composite relation (which can then be transformed to CNF).264

5 Experimentation265

In this section, with respect to tackling the MAX-QCN problem, we perform an experimental266

evaluation between and in-house implementation of greedus introduced in Section 3 (Al-267

gorithm 1), and an implementation of the Partial PaxSAT encoding introduced in Section 4268

using the PySAT toolkit [10] and the RC2 MaxSAT solver offering there [11].269

▶ Note 4. All the code is available at: https://msioutis.gitlab.io/software/270

Dataset & Setup271

We kept the dataset consistent with what has been used in previous works on the MAX-QCN272

problem for comparability, cf. [6, 7]. Specifically, we considered IA network instances generated273

by the standard A(n, d, l) model [21], used extensively in the literature. In short, A(n, d, l)274

creates network instances of size n, average constraint graph degree d, and an average275

number l of base relations per constraint. We set n = 20 and l = 6.5, and we considered276

100 inconsistent network instances for each degree d between 4 and 14 with a 2-degree step;277

hence, 600 network instances in total. For this range of degrees d, the network instances of278

model A(n, d, l) lie within the phase transition region [19]. Again, the nature and size of the279

network instances is consistent with what has been used in the literature for the MAX-QCN280

problem in order to present results that are comparable and as complete as possible, cf. [6, 7]281

(see also the number of timeouts in Figure 4d for the dense instances). For the experiments282

we used an Intel® Core™ CPU i7-12700H @ 4.70GHz, 16 GB of RAM, and the Ubuntu283

Linux 22.04 LTS OS, and one CPU core per network. All coding/running was done in284

Python 3; however, we must note that the implementation of greedus was sped up with285

PyPy,1 which comes bundled with a just-in-time compiler, whereas the same is not possible286

for the implementation of the Partial MaxSAT encoding, because the RC2 MaxSAT solver287

in PySAT uses Glucose 3 [2] as the underlying SAT oracle, which is coded in C/C++.288

Results & Remarks289

All of the experimental results are concisely presented in Figure 4. In Figure 4a we evaluate290

how the different strategies that are implemented under the hood of greedus behave291

1 https://www.pypy.org/

https://msioutis.gitlab.io/software/
https://www.pypy.org/
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(a) Avg. # of repairs required per approach.
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(b) % of dominance per heuristic.
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(d) Runtime performance of main approaches.

Figure 4 Assessing the performance of an implementation of greedus and of our Partial MaxSAT
encoding, respectively, with Interval Algebra (IA) network instances of model A(n = 20, d, l = 6.5) [21];
a timeout occurs after 3 600s, and in that case the runtime up to that point is not taken into account
(only 7 such timeouts occured, all for the Partial MaxSAT-based implementation at d = 14).

with respect to obtaining repairs in an inconsistent QCN if they are run standalone (see292

Section 3 for a description of these strategies), and how they define the respective behaviour293

of greedus when taken all together; the ground truth here is the optimal value. The best294

performing strategies with respect to obtaining few repairs are sum and weight, and the worst295

performing one is random; however, as we will see in the sequel, no strategy goes to waste in296

this portfolio-style implementation. With respect to our last point, in Figure 4b we observe297

the percentage of times that a strategy dominated all others, where by “dominated” we mean298

that the strategy obtained a number of repairs that was strictly smaller than that of any299

other strategy. Somewhat surprisingly, the worst strategy when it comes to obtaining few300

repairs, viz., random, was still able to dominate all others at least a couple of times per avg.301

degree d. This means that, by removing random, we would obtain a slightly worse result for302

greedus in Figure 4a, or, in other words, that random, albeit not the most helpful of all303

strategies, can still be considered indispensable. In Figure 4c we observe the percentage of304

times that an approach fails to find the optimal value. The performance of the strategies305

TIME 2023
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here mirrors that of Figure 4a (the two measures, of course, correlate), but what we get from306

Figure 4c is that greedus can find the optimal value for the majority of instances up to an307

avg. degree d of 10. Even though the situation might seem dramatic for an avg. degree d of308

12 and 14, the distance to the optimal value, as reported in Figure 4a, is quite small, and a309

failure still registers as a failure even when a value of x + 1 is reported instead of the optimal310

x. Finally, in Figure 4d we can see the implementation of greedus scaling gracefully as the311

network instances become denser, whereas the performance of the implementation of the312

Partial MaxSAT encoding starts deteriorating drastically and even time-outs a few times313

when trying to solve the densest of instances.314

▶ Remark 5. The time for generating the Partial MaxSAT encoding of a QCN was not taken315

into acount in our evaluation and, in particular, in Figure 4d. This is because the encoding316

is currently not generated in an optimal way and it would skew the results in favor of the317

implementation of greedus. However, some computational effort would be required in any318

case to produce the encoding, so what we see in Figure 4d for the implementation of the319

Partial MaxSAT encoding is a lower bound (with respect to our experimental evaluation320

here). In addition, despite the fact that the implementation of greedus was sped up with321

PyPy, some overhead still remains, since it is fully coded in the high-level language of Python,322

which has an inherent performance disadvantage against low-level languages like C/C++.323

Thus, what we see in Figure 4d for the implementation of greedus is an upper bound. In324

fact, based on algorithm design alone, it should be feasible to have an implementation of325

greedus that would either match or exceed the performance of the implementation of the326

Partial MaxSAT encoding in all cases. The main takeaway regarding runtime performance327

here is that greedus scales much better with respect to the average constraint graph degree328

of the network instances, and this scaling behaviour is accurately depicted in Figure 4d.329

6 Conclusion and Future Work330

In this paper, we focused on the problem of resolving inconsistency in qualitative constraint331

networks (QCNs), which can be viewed as knowledge bases of intutive, human-like descriptions332

of spatio-temporal information like x {is north of ∨ is east of} y. In particular, we presented333

two novel approaches for maximizing satisfiability in such networks: a greedy constraint-based334

and an optimal Partial MaxSAT-based one. The greedy technique adds the constraints of a335

given QCN to a new, initially empty network, one by one, filtering out the ones that fail the336

satisfiability check during the process; in doing so, it relies on many different strategies that337

create various orderings of the constraints to be processed, in a portfolio-style setting. The338

Partial MaxSAT encoding exploits to the fullest extent possible certain tractability properties339

associated with QCNs, viz., Horn theory-based maximal tractable subsets of relations [22],340

and is thus one of the most compact to date Partial MaxSAT encodings for the MAX-QCN341

problem, as evidenced also by the special case where all its clauses are assumed to be hard342

(the SAT case) [30]. We compared the two approaches against each other and provided some343

insight on the trade-off between obtaining repairs that are optimal and obtaining repairs344

in a manner that is fast. For future work, we would like to apply the techniques discussed345

here to other inconsistency-related reasoning tasks, such as the recently introduced one of346

decomposing QCNs into consistent components [24]. Further, we would like to explore more347

on the use of SAT/MaxSAT solvers, especially solvers based on local search, e.g., [4], as we348

think that they would better suit our needs; in our experience, inconsistencies in QCNs tend349

to form locally. Finally, we are looking into ways of devising an optimal method out of our350

greedy approach.351
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