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Abstract7

The concept of prime implicant is a fundamental tool in Boolean algebra, which is used in Boolean8

circuit design and, recently, in explainable AI. This study investigates an analogous concept in9

qualitative spatial and temporal reasoning, called prime scenario. Specifically, we define a prime10

scenario of a qualitative constraint network (QCN) as a minimal set of decisions that can uniquely11

determine solutions of this QCN. We propose in this paper a collection of algorithms designed to12

address various problems related to prime scenarios. The first three algorithms aim to generate13

a prime scenario from a scenario of a QCN. The main idea consists in using path consistency to14

identify the constraints that can be ignored to generate a prime scenario. The next two algorithms15

focus on generating a set of prime scenarios that cover all the scenarios of the original QCN: The first16

algorithm examines every branch of the search tree, while the second is based on the use of a SAT17

encoding. Our last algorithm is concerned with computing a minimum-size prime scenario by using18

a MaxSAT encoding built from countermodels of the original QCN. We show that this algorithm19

is particularly useful for measuring the robustness of a QCN. Finally, a preliminary experimental20

evaluation is performed with instances of Allen’s Interval Algebra to assess the efficiency of our21

algorithms and, hence, also the difficulty of the newly introduced problems here.22
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1 Introduction32

The role of prime implicants is pivotal in various domains, including knowledge compilation [2,33

5], Boolean circuit simplification [21, 22, 17], and diagnosis [7, 28]. Additionally, many recent34

research works have employed prime implicants to explain decisions by compiling machine35

learning classifiers into Boolean circuits [30, 9, 10, 11, 4].36

Qualitative Spatial and Temporal Reasoning (QSTR) focuses on reasoning about space37

and time using qualitative human-like descriptions, e.g., x {is north of } y, as opposed to38

quantitative ones [15]. QSTR is a rich symbolic AI framework concerned with studying39

various types of spatial and temporal relationships, such as the relative position of objects [14],40

the ordering and duration of events [1], and the mereotopology of regions [23]. By employing41

qualitative representations, QSTR allows modeling and reasoning about complex entities42

and phenomena in a more flexible and intuitive way without resorting to, often prohibitively43

expensive, numerical precision.44
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5:2 Prime Scenarios in Qualitative Spatial and Temporal Reasoning
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(a) A consistent plan as a QCN.
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(b) A scenario of the QCN.
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(c) A prime scenario of the QCN.

Figure 1 An illustration of the knowledge compilation notion of prime scenario of a qualitative
constraint network (QCN) (see also Definition 4); a set of prime scenarios can form a prime scenario
cover of a QCN, for such a cover, here, we only need to additionally consider the prime scenario in
Figure 1c with tasky {equals} taskz instead of tasky {before} taskz.

In this study, we introduce a novel notion, called prime scenario, that serves as the QSTR45

analogue of the notion of prime implicant. A prime scenario is defined as a minimal set46

of decisions that can only lead to solutions of the original qualitative constraint network47

(QCN); see Figure 1. While the notion of prime implicant shares similarities with that of48

prime scenarios, there are significant distinctions that hinder the direct application of prime49

implicant computation approaches to our context. Notably, prime scenarios are based on50

binary relations between variables, while prime implicants rely on truth values of variables.51

For instance, any literal entailed by a prime implicant belongs to that implicant; in contrast,52

singleton constraints entailed by prime scenarios do not have this property. To better grasp53

this point, consider the following constraints: x {before} y, y {before, equals} z, and x {before,54

after} z (Figure 1a); although the two first constraints entail x {before} z, this constraint does55

not belong to the prime scenario {x {before} y, y {before} z} (Figure 1c): it is redundant.56

It is worth mentioning that our notion of prime scenario has some relation to that of57

prime sub-QCN introduced in [13]. Specifically, the constraints that are not included in58

the prime scenario are redundant when we require the instantiated part within the prime59

scenario. In particular, for every atomic QCN, the prime scenarios are the prime sub-QCNs.60

Intuitively, the difference between prime scenarios and prime sub-QCNs bears a resemblance61

to the difference between prime implicants and the formulas resulting from the elimination62

of redundant clauses in propositional formulas expressed in conjunctive normal form.63

To illustrate the motivation behind our novel work here, consider the example of machine64

learning classifiers that can be compiled into QCNs, much like as in the ongoing research65

involving Boolean circuits that we mentioned in the beginning. In this case, the solutions66

correspond to positive decisions, while the remaining interpretations correspond to negative67

ones. To explain the decisions made by these classifiers, prime scenarios can be used in a68

similar way as prime implicants are used to explain decisions of classifiers compiled into69

Boolean circuits. In particular, a prime scenario that covers a solution can be seen as a70

sufficient reason behind the decision associated with this solution. What is more, the notions71

of prime scenario and prime scenario cover that we introduce here (Figure 1), form a step72

towards compiling QCNs and open new avenues for research in this field: Prime scenarios73

can be used in the context of compilation of spatio-temporal knowledge bases, and prime74

scenario covers would be a classical way to perform such compilations.75

With regard to the discussion above, our main contributions are fivefold: (i) We define the76

notion of prime scenario of a QCN and propose three algorithms for computing it (Section 3);77

(ii) we introduce and study the related problem of prime scenario cover of a QCN and present78

two distinct algorithms for solving it, a constraint- and a SAT-based one (Section 4); (iii) we79

focus on obtaining a minimum-size prime scenario of a QCN and devise a countermodel-80
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Figure 2 A representation of the 13 base relations b of IA, each one relating two potential intervals
x and y as in x b y; the converse of b, i.e., b−1, can be denoted by bi and is omitted in the figure.

based MaxSAT encoding to tackle this task, and (iv) we show how the minimum-size prime81

scenarios are useful for measuring the robustness of a QCN (Section 5); and finally (v) we82

experimentally evaluate all our algorithms and make our code available for any interested83

researcher to use (Section 6).84

2 Preliminaries85

A qualitative spatial or temporal constraint language is based on a finite set B of jointly86

exhaustive and pairwise disjoint relations, called base relations, and defined over an infinite87

domain D [15] (e.g., R). The base relations of such a language can be used to represent the88

definite knowledge between any two of its entities (e.g., x contains y). The set B contains the89

identity relation Id, and is closed under the converse operation (−1). Indefinite knowledge90

can be specified by a union of possible base relations, and is represented by the set containing91

them. Hence, 2B represents the total set of relations. The set 2B is equipped with the usual92

set-theoretic operations of union and intersection, the converse operation, and the weak93

composition operation, denoted by ⋄ [15]. For all r ∈ 2B, we have that r−1 =
⋃

{b−1 | b ∈ r}.94

The weak composition (⋄) of two base relations b, b′ ∈ B is defined as the smallest (i.e., most95

restrictive) relation r ∈ 2B that includes b ◦ b′, or, formally, b ⋄ b′={b′′ ∈ B | b′′∩(b ◦ b′) ̸= ∅},96

where b◦b′={(x, y) ∈ D×D | ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′} is the (true) composition97

of b and b′. For all r, r′ ∈ 2B, we have that r ⋄ r′ =
⋃

{b ⋄ b′ | b ∈ r, b′ ∈ r′}.98

As an illustration, consider the well-known qualitative temporal constraint language of99

Interval Algebra (IA) [1]. IA considers time intervals (as temporal entities) and the set of100

base relations B = {eq (= Id), b, bi, m, mi, o, oi, s, si, d, di, f , fi} to encode knowledge101

about the temporal relations between intervals on the real line, as described in Figure 2.102

Finally, representing and reasoning about qualitative spatio-temporal information can be103

facilitated by a qualitative constraint network (QCN); we recall the following definition:104

▶ Definition 1. A qualitative constraint network (QCN) is a tuple (V, C) where:105

V = {v1, . . . , vn} is a finite set of variables over some infinite domain D (e.g., R);106

and C is a mapping C : V × V → 2B associating a relation with each pair of variables s.t.107

C(v, v) = {Id} for all v ∈ V , and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .108

For convenience, we often consider that the set of variables of a QCN consists of integers,109

and we use [[N ]] to denote the set {(i, j) ∈ V × V : i < j}.110

A QCN N = (V, C) is said to be trivially inconsistent iff ∃v, v′ ∈ V such that C(v, v′) = ∅.111

A solution of a QCN N = (V, C) is a mapping σ : V → D such that ∀v, v′ ∈ V ,112

∃b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b; N is said to be consistent iff it admits a solution.113

A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′) such that, ∀u, v ∈ V ,114

C ′(u, v) ⊆ C(u, v). (This term is also known as a refined QCN in the literature.)115

A scenario of N is a consistent atomic sub-QCN S of N , where a QCN S = (V, C ′) is116

atomic iff ∀v, v′ ∈ V , |C(v, v′)| = 1. To refer to the set of scenarios of N , we employ the117

notation Scenarios(N ).118

Throughout the paper, we use the following notational conventions for a QCN N = (V, C):119

For two variables v, v′ ∈ V , we use N [v, v′] to denote the relation C(v, v′).120
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5:4 Prime Scenarios in Qualitative Spatial and Temporal Reasoning

For two variables v, v′ ∈ V and a relation r ∈ 2B, we use v r v′ to denote that C(v, v′) = r121

when there is no ambiguity about the considered QCN.122

For two variables v, v′ ∈ V and a relation r ∈ 2B, we use N[v,v′]/r to denote the result of123

substituting C(v, v′) with r in N , i.e., N[v,v′]/r is the QCN (V, C ′) defined by C ′(v, v′) = r,124

C ′(v′, v) = r−1 and, ∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)}, C ′(u, u′) = C(u, u′).125

A counter-scenario of a QCN N = (V, C) is a consistent atomic QCN S over V that is126

not a scenario of N , i.e., there exist i, j ∈ V such that S[i, j] ̸⊆ N [i, j]. We denote the set of127

counter-scenarios of N as CounterS(N ).128

In general, there exists only one type of QCNs that do not admit any counter-scenario:129

those in which every constraint is universal, i.e., it contains all base relations. In such cases,130

we use N⊤ to denote the universal QCN when the set of variables is assumed to be known,131

or to refer to this type of QCNs.132

Given a set of variables V , we define a q-assignment over V as a partial function f from133

{(i, j) : i, j ∈ V and i < j} to B. We use N f
V to denote the QCN (V, C) defined as follows:134

for each (i, j) ∈ dom(f), C(i, j) = {f(i, j)}; and135

for each i, j ∈ V with i < j and (i, j) /∈ dom(f), C(i, j) = B.136

Given a QCN N , we use min(N ) to denote the equivalent minimal sub-QCN of N [26],137

i.e., the sub-QCN that contains only the feasible base relations of the original one.138

It is important to note that in this paper, we focus on calculi with the following property:139

▶ Note 2. For any q-assignment f over V , the closure of N f
V under path consistency (with140

weak composition, or, equivalently, under algebraic closure [25]) yields min(N f
V ).141

This property holds for many widely adopted qualitative calculi, such as IA [1] (mentioned142

earlier) and RCC8 [23]; a fuller listing is provided in the proof of Theorem 2 in [16].143

As a direct consequence of the aforementioned property, we also have that, for any144

q-assignment f over V , path consistency decides the consistency of N f
V .145

Given a consistent atomic QCN S = (V, C), we say that a q-assignment f over V covers146

S if S is a scenario of N f
V .147

In the sequel, we also represent a q-assignment as a set of expressions of the form (i, j) 7→ b:148

f corresponds to the set {(i, j) 7→ f(i, j) : (i, j) ∈ dom(f)}.149

3 Prime Scenarios150

In this section, we introduce the concept of prime scenario, which can be thought of as151

analogous to that of prime implicant in propositional logic.152

▶ Definition 3 (Convergent Q-Assignment). A convergent q-assignment (CQA) of a QCN153

N = (V, C) is a q-assignment π over V where (1) N π
V is consistent, and (2) every scenario154

of N π
V is a scenario of N .155

Convergent q-assignments are similar in concept to implicants in propositional logic.156

Property 1 states that a CQA maintains consistency, and Property 2 says that a CQA cannot157

lead to a scenario that does not satisfy the original QCN. By virtue of this second property,158

π(i, j) ∈ C(i, j) holds for every (i, j) ∈ dom(π).159

▶ Definition 4 (Prime Scenario). A prime scenario of a QCN N is a convergent q-assignement160

π of N where for every D ⊊ dom(π), π|D is not a convergent q-assignment.161



Y. Salhi and M. Sioutis 5:5

Algorithm 1 FindOnePS_1(N ,S)

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 π ← {(i, j) 7→ b : (i, j) ∈ [[N ]], b ∈ S[i, j],N [i, j] ̸= B};
2 for (i, j) ∈ [[N ]] do
3 N ′ ← PathConsistency(N π

V [i,j]/B);
4 if N ′ ⊆ N then
5 π ← π|dom(π)\{(i,j)};
6 return π

In other words, a prime scenario is a CQA that has a minimal domain (w.r.t. set inclusion).162

We use PSes(N ) to denote the set of prime scenarios of N .163

To distinguish between prime scenarios and standard scenarios more clearly, we will refer164

to the latter as complete scenarios.165

▶ Proposition 5. The problem of determining whether a q-assignment is a prime scenario166

of a QCN is tractable.167

Proof. We show that we can determine whether a q-assignment is a prime scenario by linearly168

applying the polytime procedure of path consistency. Let N = (V, C) be a QCN and π a169

q-assignment of N . To determine whether π is a prime scenario, we first need to check that170

N π
V is consistent, which can be done using path consistency (see Note 2 and the discussion171

after). Using, again, path consistency, we can determine whether every complete scenario of172

N π
V is a complete scenario of N (see Note 2). Indeed, we only have to show N ′ ⊆ N , where173

N ′ is the result of applying path consistency on N π
V . Similarly, to show that π is minimal174

w.r.t. set inclusion, we can use path consistency to show that, for every (i, j) ∈ dom(π),175

Nij ̸⊆ N , where Nij is the result of applying path consistency on N π|dom(π)\{(i,j)}
V . ◀176

Let us recall that a prime implicant of a propositional formula is a minimal consistent177

conjunction of literals whose Boolean models are models of this formula. This definition178

clearly shows that prime implicants and prime scenarios are similar in concept. However,179

a closer examination reveals that there are significant differences between them, making180

the study of prime scenarios highly compelling and of great interest. First, prime scenarios181

are more complex structures by involving constraints and qualitative relations. Secondly,182

universal constraints, which are analogous to tautologies in the case of propositional logic, can183

be involved in prime scenarios, whereas tautologies can be simply ignored in prime implicant184

computation. Consider, for instance, the QCN N in Point Algebra PA [33] (B = {<, =, >})185

that corresponds to the following constraints: i{<, =, >}j, j{<, =, >}k and i{<}k; we obtain186

that π = {(i, j) 7→<, (j, k) 7→<} is a prime scenario of N even though the two involved187

constraints in π are universal in N . Thirdly, unlike entailed literals in the case of prime188

implicants, the singleton constraints entailed from a prime scenario do not belong to it.189

The prime implicants benefit significantly from this advantage, as it enables the use of unit190

propagation to efficiently compute them.191

Computing One Prime Scenario192

The focus here is on the computation of a prime scenario that covers a given complete scenario.193

We propose three different algorithms that are centered around the idea of computing a194

prime scenario from a precomputed CQA.195
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5:6 Prime Scenarios in Qualitative Spatial and Temporal Reasoning

Algorithm 2 FindOnePS_2(N ,S)

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 N ′ ← N⊤;
2 P ← [[N ]];
3 while N ′ ̸⊆ N do
4 Let (i, j) ∈ P s.t. |N ′[i, j]| > 1 and N [i, j] ̸= B;
5 N ′ ← PathConsistency(N ′

[i,j]/S[i,j]);
6 P ← P \ {(i, j)}
7 π ← {(i, j) 7→ b : (i, j) ∈ [[N ]] \ P, b ∈ S[i, j]};
8 for (i, j) ∈ [[N ]] \ P do
9 N ′ ← PathConsistency(N π

V [i,j]/B);
10 if N ′ ⊆ N then
11 π ← π|dom(π)\{(i,j)};
12 return π

Algorithm 3 FindOnePS_3(N ,S)

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 N ′ ← N ;
2 min← 1;
3 max← n;
4 while min ̸= max do
5 v ← (max + min)/2;
6 N ′′ ← PathConsistency(N ′

[i1,j1]/S[i1,j1],...,[iv,jv ]/S[iv,jv ]);
7 if N ′′ ⊆ N then
8 max← v;
9 else

10 min← v + 1;
11 N ′ ← N ′′;
12 π ← {(ik, jk) 7→ bk : 1 ≤ k ≤ min, b ∈ S[i, j]};
13 for k ∈ 1, . . . , min do
14 if PathConsistency(N π

V [ik,jk]/B) ⊆ N then
15 π ← π|dom(π)\{(i,j)};
16 return π

Algorithm 1 starts by obtaining a CQA from a given complete scenario: its domain196

corresponds to the set of non-universal constraints in the original QCN. It then iterates over197

this CQA, applying path consistency to determine if the domain can be reduced.198

Algorithm 2 begins by constructing a more compact CQA compared to Algorithm 1. It199

achieves this by using a while loop, which adds a constraint at each iteration using the given200

complete scenario until it reaches a CQA. Then, similarly to Algorithm 1, it uses a for loop201

to compute a prime scenario from the obtained CQA.202

Algorithm 3 is described by fixing {(i, j) ∈ [[N ]] : N [i, j] ̸= B} = {(i1, j1), . . . , (in, jn)}.203

Similar to Algorithm 2, it starts by computing a CQA and then utilizes a for loop to204

obtain a prime scenario from the computed CQA. However, unlike Algorithm 2, Algorithm 3205

incorporates a dichotomic search to compute a CQA, which might enable it to perform the206

search more efficiently.207

By employing three distinct algorithms, we can benefit from the advantages and the208
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Algorithm 4 ComputePSCover(N ,N ′, π)

in : Two QCNs N = (V, C) and N ′(V, C′), and q-assignment π over V

out : A PS cover of N by assigning N⊤ to N ′ and ∅ to π

1 N ′′ ← PathConsistency(N ′);
2 if ∃(i, j) ∈ [[N ]] \ dom(π),N ′′[i, j] ∩N [i, j] = ∅ then
3 return ∅;
4 if N ′′ ⊆ N then
5 return {FindOnePS(N , π)};
6 Let (i, j) ∈ [[N ]] \ dom(π) s.t. N ′′[i, j] ̸⊆ N [i, j];
7 R← ∅;
8 for b ∈ N ′′[i, j] ∩N [i, j] do
9 R← R ∪ {ComputePSCover(N ,N ′′

[i,j]/b, π ∪ {(i, j) 7→ b})};
10 return R

strength of each approach. Our experiments have revealed that these algorithms exhibit209

varying levels of accuracy and efficiency for specific instances. Note that the considered210

approaches are similar to some approaches used in propositional logic for computing prime211

implicants, prime implicates, and minimal unsatisfiable cores (e.g., see [29, 18, 8]).212

4 Prime Scenario Cover213

Prime implicant cover is a key knowledge compilation concept in the realm of Boolean circuit214

design, as it allows us to simplify complex Boolean functions: a function is represented as a215

disjunction of prime implicants that cover all its models. In this section, we investigate a216

similar concept in QSTR, called prime scenario cover.217

We define a prime scenario cover of a QCN N as any set C of prime scenarios of N such218

that each complete scenario of N is covered by at least one element of C.219

A prime scenario cover provides a simplified representation of the original QCN. It can220

also be regarded as a compact representation of all complete scenarios of the initial QCN.221

Computing A Prime Scenario Cover222

We propose two distinct approaches for computing a prime scenario cover of a given QCN.223

The first approach considers every branch of the search tree to cover all scenarios, while the224

second is based on an encoding in the SAT problem.225

Constraint-based Approach226

Algorithm 4 generates a prime scenario cover by recursively exploring the search tree and227

including a prime scenario for each found CQA. To obtain a prime scenario cover, we need to228

invoke ComputePSCover by assigning N⊤ to N ′ and ∅ to π. The code in Lines 2–3 ensures229

that search-subtrees without any CQA are not considered. The code in Lines 4–5 generates a230

prime scenario from a found CQA using one of the approaches described previously. Finally,231

the code in Lines 6–9 selects a constraint in the current QCN to continue exploring the232

search tree by making new decisions.233

SAT-based Approach234

To define our second algorithm, we use a SAT encoding of the consistency problem [19, 35]. For235

every (i, j) ∈ [[N ]] and every b ∈ B, we associate a distinct propositional variable pb
ij . Then,236
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Algorithm 5 ComputePSCover(N )

in : A QCN N = (V, C)
out : A PS cover C of N

1 C ← ∅;
2 Φ← SATEnc(N );
3 while SAT(Φ) do
4 π ← FindOnePS(N ,Sω);
5 C ← C ∪ {π};
6 Φ← ϕ ∧

∨
(i,j)∈dom(π) ¬p

π(i,j)
ij

7 return C

we define the encoding SATEnc(N ) as follows: (1)
∑

b∈C(i,j) pb
ij = 1 for each (i, j) ∈ [[N ]];237

and (2)
∧

b1∈C(i,j)
b2∈C(j,k)

(pb1
ij ∧ pb2

jk →
∨

b3∈(b1⋄b2)∩C(i,k) pb3
ik) for every (i, j), (j, k) ∈ [[N ]].238

Note that the sum constraints in Formula (1) can be linearly encoded as CNF formulas239

in several ways (e.g., see [31]).240

For every model ω of SATEnc(N ), the associated complete scenario of N , denoted Sω, is241

defined as follows: for every (i, j) ∈ [[N ]], Sω[i, j] = {b : ω(pb
ij) = 1}.242

Algorithm 5 allows us to compute a prime scenario cover by ensuring that each newly found243

prime scenario covers at least one complete scenario that is not covered by the previously244

obtained prime scenarios. Indeed, in each iteration of the while loop, the computed complete245

scenario is not covered by the prime scenarios found in the previous iterations, thanks to the246

addition of blocking clauses in Line 6.247

5 Minimum-Size Prime Scenarios248

The minimum-size prime scenarios are those that have the smallest possible domains. We249

think that, like minimum-size prime implicants, minimum-size prime scenarios can be applied250

in various contexts. In this section, after describing our algorithm for computing minimum-251

size prime scenarios, we introduce a novel application by showing that these prime scenarios252

can be useful for analyzing and reasoning about robustness. Specifically, they can help us to253

define a robustness measure that provides insights into the number of critical constraints.254

Computing a Minimum-Size Prime Scenario: PMaxSAT-based Approach255

Given two QCNs N and N ′ over the same set of variables V , we use comp(N , N ′) to denote256

the set {(i, j) 7→ b : (i, j) ∈ [[N ]] and b ∈ N [i, j] \ N ′[i, j]}.257

A hitting set is a subset of a collection of sets that intersects with every element in the258

collection. A hitting set is said to be minimal if it cannot be reduced in size without ceasing259

to be a hitting set.260

The following theorem shows that all prime scenarios can be obtained from the minimal261

hitting sets of collections of sets built from the counter-scenarios.262

▶ Theorem 6. A q-assignment π is a prime scenario of N iff π is a minimal hitting set of263

H = {comp(N , N ′) : N ′ ∈ CounterS(N )} and N π
V is consistent.264

Proof. First, we prove the "if" part. Let π be a q-assignment such that N π
V is consistent265

and π is a minimal hitting set of H. We assume for the sake of contradiction that N π
V is266

satisfied by a counter-scenario N ′ of N . This implies that π ∩ comp(N , N ′) = ∅. However,267
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Algorithm 6 MinimumSizePS(N )

in : A QCN N = (V, C)
out : A minimum-size prime scenario of N

1 Let S0 an arbitrary counter-scenario of N ;
2 H ← {comp(N ,S0)};
3 while true do
4 π ← getHS(MaxSATMH(H,N ));
5 N ′ ← PathConsistency(N π

V );
6 if N ′ ⊆ N then
7 return π

8 Let S be an arbitrary scenario of N ′ where S[i, j] ̸⊆ N [i, j] for some (i, j) ∈ [[N ]];
9 H ← H∪ {comp(N ,S)};

this contradicts the assumption that π is a hitting set of H. Therefore, π must be a CQA of268

N . To prove that π is a prime scenario, we must show that its domain is minimal w.r.t. set269

inclusion. This follows directly from the fact that π is a minimal hitting set of H. Indeed,270

any proper subset π′ of π does not hit at least one element of H, which means that N π′

V is271

satisfied by at least one counter-scenario of N . Consequently, π is a prime scenario of N .272

Now, we move to the "only if" part. Let π be a prime scenario of N . Suppose that there273

is counter-scenario N ′ of N s.t. π ∩ comp(N , N ′) = ∅. Thus N ′ is a complete scenario of274

N π
V , which leads to a contradiction. Therefore, π is a hitting set of H. Just as in the "if"275

part, the minimality of π as a hitting set is implied by its minimality as a CQA. ◀276

To some extent, Theorem 6 is similar to the minimal hitting set duality between prime277

implicants and prime implicates in the case of propositional logic [24, 27, 20].278

Our algorithm generates candidate solutions by utilizing a Partial MaxSAT encoding279

to compute specific minimal hitting sets. We denote this encoding by MaxSATMH(H′, N ),280

where N = (V, C) is a QCN and H′ ⊆ {comp(N , N ′) : N ′ ∈ CounterS(N )}. In addition to281

the variables used to define the SATEnc(N ) encoding, described in Section 4, we associate282

a distinct propositional variable qb
ij with every (i, j) 7→ b ∈

⋃
H′. The hard part of283

MaxSATMH(H′, N ) corresponds to the conjunction of SATEnc(N ) and the following formulas:284

(1)
∨

(i,j) 7→b∈e qb
ij for each e ∈ H; and (2) qb

ij → pb
ij for each (i, j) 7→ b ∈

⋃
H′.285

Formula (1) guarantees that each solution of the encoding hits all elements of H′, and286

Formula (2) forces the truth values of the variables representing a complete scenario of N to287

match those of the variables of the form qb
ij .288

The soft part of MaxSATMH(H′, N ) corresponds to the set of unit clauses {¬qb
ij : (i, j) 7→289

b ∈
⋃

H′}. This allows us to minimize the size of the hitting set.290

Given a solution ω of MaxSATMH(H′, N ), its associated q-assignment is πω = {(i, j) 7→291

b ∈
⋃

H′ : ω(qb
ij) = 1}. Clearly, πω is one of the smallest hitting sets of H′ such that N πω

V is292

consistent and covers a scenario of N .293

Theorem 6 shows that every minimum-size prime scenario π of N is a minimum-size294

hitting set of H = {comp(N , N ′) : N ′ ∈ CounterS(N )} where (1) N π
V is consistent, and295

(2) every complete scenario of N π
V is a complete scenario of N . Consequently, if π is one of296

the smallest hitting sets of a subset H′ ⊆ H that satisfies Properties 1 and 2, then π is a297

minimum-size prime scenario of N . This is because every hitting set of H is also a hitting298

set of H′. Algorithm 6 uses this property to generate a minimum-size prime scenario. In299

each iteration of the while loop, Algorithm 6 employs the encoding MaxSATMH(H′, N ) to300

compute π, one of the smallest hitting sets that satisfies Property 1 (Line 4). It then uses301

path consistency to check whether π satisfies also Property 2 (Lines 5–6). If π satisfies both302
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properties, then π is a minimum-size prime scenario and is returned; otherwise, the algorithm303

adds an element obtained from a new counter-scenario of N to the collection of sets H. In304

the worst case, all counter-scenarios of N will be considered in H, and this necessarily allows305

the algorithm to obtain a minimum-size prime scenario.306

Algorithm 6 shares some similarities with the approach used in [6] for solving the MaxSAT307

problem. This approach leverages the duality between minimal correction subsets and minimal308

unsatisfiable subsets.309

An Application of Minimum-Size Prime Scenarios: Robustness Measure310

Now, we demonstrate one possible use of minimum-size prime scenarios in reasoning about311

robustness in QCNs, cf. [32] and [34]. With respect to our terminology here, QCN robustness312

refers to the ability of a QCN to withstand perturbations, i.e., eliminations of base relations,313

without needing to transform counter-scenarios into scenarios: the scenarios that result after314

perturbation are also scenarios of the original QCN. In other words, a robust QCN can315

maintain its consistency when facing perturbations. Although certain robustness notions316

have been studied in [32] and [34], robustness measures that can be used to compare different317

QCNs with one another have not been formalized or introduced; in fact, those notions only318

compare the different scenarios (or refined QCNs) with one another of a single QCN.319

We define a robustness measure as a function from the set of QCNs to positive real
numbers. Our robustness measure, denoted RP S , is defined as follows:

RP S(N ) = max{|[[N ]]| − |dom(π)| : π ∈ PSes(N )}

where max ∅ = 0. For consistent QCNs, we clearly have RP S(N ) = |[[N ]]| − min{|dom(π)| :320

π ∈ PSes(N )}; It follows that RP S can be computed from any minimum-size prime scenario.321

Our measure captures the fact that the robustness increases by decreasing the number of322

the constraints that we need to instantiate to get a complete scenario of the given QCN.323

To formally establish the suitability of our robustness measure, we present a result that324

lists interesting properties that can be considered as necessary for any robustness measure.325

▶ Proposition 7. The following properties are satisfied:326

1. for any inconsistent QCN N , RP S(N ) = 0;327

2. RP S(N⊤) = |[[N⊤]]|;328

3. for all two QCNs N and N ′ with Scenarios(N ) = Scenarios(N ′), RP S(N ) = RP S(N ′);329

4. for all two QCNs N and N ′ with Scenarios(N ) ⊆ Scenarios(N ′), RP S(N ) ≤ RP S(N ′).330

Proof. Property 1 holds since every inconsistent QCN does not admit any prime scenario.331

Property 2 follows from the fact that π = ∅ is a prime scenario of N⊤. The fact that the332

QCNs having the same complete scenarios have also the same prime scenarios leads to333

Property 3. Property 4 stems from the observation that PSes(N ) ⊆ PSes(N ′) holds when334

Scenarios(N ) ⊆ Scenarios(N ′). ◀335

The first two properties state that the minimum robustness value is associated with336

inconsistent QCNs, while the maximum value corresponds to QCNs where all relations are337

trivial, viz., N⊤. The third property ensures that identical complete scenarios lead to the338

same robustness value. The last property guarantees that the robustness value does not339

decrease as more complete scenarios are considered.340
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d FindOnePS_1 FindOnePS_2 FindOnePS_3 MinimumSizePS

9 0.2 | 0.3 | 0.4

45 | 45.0 | 45

0.2 | 0.29 | 0.36

26 | 38.24 | 52

0.2 | 0.3 | 0.38

34 | 45.11 | 50

0.2 | 0.26 | 0.31

0.9k | 2.2k | 4.2k
(34)

8 0.23 | 0.34 | 0.45

40 | 40.0 | 40

0.23 | 0.33 | 0.43

28 | 39.02 | 54

0.23 | 0.34 | 0.45

23 | 41.03 | 45

0.23 | 0.29 | 0.35

1.5k | 2.9k | 5.7k
(45)

7 0.29 | 0.4 | 0.66

35 | 35.0 | 35

0.29 | 0.39 | 0.66

26 | 39.98 | 60

0.29 | 0.4 | 0.57

27 | 37.39 | 40

0.26 | 0.33 | 0.46

1.7k | 3.4k | 5.3k
(64)

6 0.3 | 0.47 | 0.6

30 | 30.0 | 30

0.3 | 0.46 | 0.6

26 | 39.60 | 54

0.33 | 0.46 | 0.63

21 | 32.89 | 34

0.3 | 0.38 | 0.47

2.7k | 4.1k | 5.5k
(85)

5 0.4 | 0.57 | 0.76

25 | 25.0 | 25

0.4 | 0.57 | 0.76

28 | 37.92 | 46

0.4 | 0.57 | 0.8

23 | 28.3 | 29

0.36 | 0.45 | 0.56

2.2k | 4.3 | 6.2k
(88)

4 0.5 | 0.69 | 0.85

20 | 20.0 | 20

0.5 | 0.69 | 0.85

24 | 34.1 | 40

0.5 | 0.7 | 0.9

21 | 23.57 | 24

0.45 | 0.52 | 0.55

3.6k | 5.6k | 7.0k
(97)

3 0.67 | 0.83 | 1.0

15 | 15.0 | 15

0.67 | 0.83 | 1.0

22 | 28.14 | 30

0.67 | 0.84 | 1.0

16 | 17.96 | 18

0.6 | 0.63 | 0.67

5.0k | 5.0k | 5.0k
(98)

Table 1 Assessing the performance of obtaining (minimum) prime scenarios, the format being
min | avg.(µ) | max prime index

min | avg.(µ) | max # of oracle calls (# of timeouts); a timeout occurs after 1 200s, and it is im-

portant to note that the oracle calls for the FindOnePS variants concern the application of path
consistency, whereas the ones for MinimumSizePS the solving of a Partial MaxSAT instance.

d = 9 8 7 6 5 4 3

ComputePSCover 0.2k 0.3k 0.5k 1.0k 2.3k 3.0k 3.5k

ComputePSCover(SAT) 16.05 25.04 56.21 0.1k 0.4k 0.7k 1.0k
Table 2 Assessing the performance of obtaining prime scenario covers, the format being avg.

# of oracle calls; it is important to note that the oracle calls for ComputePSCover concern the
application of path consistency, whereas the ones for ComputePSCover(SAT) the solving of a
SAT instance, and that avg. cover size = avg. # of oracle calls of ComputePSCover(SAT)− 1
(each oracle call in line 3 of Algorithm 5 computes a prime scenario in the cover, minus the last one).

6 Experimentation341

In this section, we perform a preliminary evaluation to assess the efficiency of our algorithms342

and, hence, also the difficulty of the introduced problems that they tackle. Our expectation343

is that: the FindOnePS variants should run really fast as they involve a number of344

path consistency applications that is linear to the number of constraints of a QCN, the345

ComputePSCover variants should run comparatively quite slower as they explore the346

search space of a QCN and mirror model counting algorithms, and the MinimumSizePS347

algorithm should be the slowest of all as it is not only dealing with finding a prime scenario348

for each of the exponentially many scenarios of a QCN, but one that is minimum-size too349

(there are many possibilities for a single scenario).350

Dataset, Measures, & Setup351

To be able to have results that are comparable between fast polytime methods (the Fin-352

dOnePS variants) and methods for hard optimization problems (the MinimumSizePS353

algorithm), we consider QCNs of IA of 10 variables with a maximum of 2 base relations per354
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Figure 3 Assessing the runtime of our algorithms for the problems pertaining to prime scenarios.

non-universal constraint, for every avg. degree d ∈ (9, 8, . . . , 3) of their constraint graphs355

(i.e., going from complete graphs to sparse ones). Specifically, we generate two arbitrary356

IA scenarios that we then proceed to unify; then, we create all the QCNs that result by357

considering one sub-graph of the initially complete constraint graph for every degree d in the358

aforementioned range, each with an avg. degree d. We consider 100 QCNs with an initially359

complete constraint graph, each yielding 6 more (sparser ones), hence a total of 700 QCNs.360

The size of the networks is relatively consistent with what has been used in the literature for361

similar optimization problems in order to present results that are as complete as possible (e.g.,362

[3]), see also Table 1; in addition, a QCN of IA of n variables enumerates O(2n·log n) scenarios363

(qualitative solutions) [12], which translates to roughly 10 billion scenarios in our case.364

All of the used measures are clear and intuitive, with the exception of prime index : this is365

the ratio of the # of non-universal constraints in a prime scenario to the # of non-universal366

constraints in the original QCN and, thus, takes values in (0, 1]. Clearly, the denser the367

network, the more opportunities there are to obtain a low measure of this type.368

For the experiments we used an Intel®Core®CPU i7-12700H @ 4.70GHz, 16 GB of RAM,369

and the Ubuntu Linux 22.04 LTS OS. All coding/running was done in Python 3.10.6; the370

code is available at: https://seafile.lirmm.fr/d/9c0cbd2cd0954252ab96/.371

Results & Remarks372

The results are shown in Tables 1 and 2 and Figure 3, and confirm our expectations; we detail373

as follows. Regarding (minimum) prime scenario computation, the polytime FindOnePS374

variants are extremely fast, and among those variants the simpler FindOnePS_1 has the375

best performance overall; in the case of computing a prime scenario that is also minimum-size,376

we can see that MinimumSizePS can reduce the min, avg., and max prime index values,377

but at a huge cost as the number of scenarios that this algorithm has to consider becomes378

detrimental to its runtime performance (see # of timeouts in Table 1 and runtime in Figure 3379

in particular). Regarding prime scenario cover computation, the constraint-based and the380

SAT-based ComputePSCover algorithms perform very similarly, with the SAT variant, viz.,381

ComputePSCover(SAT), performing better overall with respect to runtime performance382

(see Figure 3 in particular); here, we must note that we did not find any notable differences383

in the size of the covers that these algorithms computed (the same result applies to both, see384

the caption of Table 2), even though such differences may exist in general.385

https://seafile.lirmm.fr/d/9c0cbd2cd0954252ab96/
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7 Conclusion and Perspectives386

We introduced the novel notion of prime scenario to QSTR, which is analogous to that of387

prime implicant in the case of classical logic. In sum, we made five major contributions: first,388

we described three methods for computing one prime scenario; secondly, we presented two389

methods for computing a prime scenario cover, which is a set of prime scenarios that cover all390

the scenarios of a given QCN; thirdly, we proposed a method for computing a minimum-size391

prime scenario and, fourthly, demonstrated how this notion can be used to reason about392

robustness; and, fifthly, we experimentally evaluated all our algorithms and made our code393

available for any interested researcher to use. Our study opens up new perspectives by394

revealing previously unexplored ways to extend the notion of prime implicants to QSTR.395

Specifically, it sheds light on the possible use of prime scenarios to explain the decisions made396

by classifiers compiled into QCNs, in the same way as prime implicants [30, 9, 10, 11, 4], and397

opens new avenues for research in the field of knowledge compilation in the context of QSTR.398
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