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ABSTRACT
In this paper we tackle theMAX-QCN optimization problem, which

consists in characterizing a consistent scenario that maximizes the

satisfiability of a spatial or temporal qualitative constraint network

(QCN). We propose an original hybrid evolutionary algorithm for

solving the MAX-QCN problem, which we call EAMQ for short.

This EAMQ method consists in randomly generating an initial

population of consistent G-scenarios, and then realizing in an iter-

ative manner an evolution of this population by generating new

G-scenarios from crossover operations applied on the better indi-

viduals of the population at hand. Additionally, every time a new

scenario is generated, an exploration of its neighborhood is real-

ized in order to obtain a better scenario. Preliminary experiments

conducted on QCNs of the Interval Algebra show the interest of

our approach for solving theMAX-QCN problem.
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1 INTRODUCTION
Qualitative Spatial and Temporal Reasoning (QSTR) is a well-establi-
shed area in the field of Knowledge Representation and Reasoning

that has been continuously growing over the past decades due to

the diversity of the proposed qualitative calculi for representing

entities and events in time or space [19]. The usefulness of the

qualitative approach is demonstrated in a vast range of applications
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that involve dynamic GIS, cognitive robotics, medicine, and spatio-

temporal design [3, 17, 26].

The problem of representing and reasoning about qualitative

information can be modeled as a qualitative constraint network

(QCN) using a qualitative constraint language. Specifically, a QCN
is a network of constraints corresponding to qualitative spatial or

temporal relations between spatial or temporal variables respec-

tively, and a qualitative constraint language is used to define those

constraints over a finite set of binary relations, called base rela-
tions (or atoms) [19]. In the literature, with respect to time, the

Interval Algebra (IA) [2] models the knowledge about the temporal

relations between intervals in the timeline by using qualitative con-

straints such as precedes, overlaps, and during. On the other hand,

with respect to space, a subset of the Region Connection Calculus

algebra (RCC) [25], namely RCC8, encodes knowledge about the
spatial relations between topological regions by using qualitative

constraints such as disconnected, overlaps, and equals. These are
the most well-known and used calculi in QSTR for representing

and reasoning with qualitative temporal and spatial information

respectively.

Motivation
Given a QCN, we are mainly interested in its satisfiability checking

problem, which is the problem of obtaining a valuation of its set of

variables such that all of its constraints are satisfied, that valuation

being called a solution. However, obtaining a solution is clearly not

possible when the QCN at hand is unsatisfiable. In such cases, we

need to relax the initial network and try to find a partial valuation

that satisfies the maximum number of constraints in the considered

QCN. This optimisation problem is called the MAX-QCN problem

and it was recently introduced and studied in [9]. Given a QCN
N , the MAX-QCN problem is the problem of obtaining a spatial

or temporal configuration that maximizes the number of satisfied

constraints in N . The motivation behind studying the MAX-QCN
problem lies in the fact that representing spatial or temporal in-

formation may inevitably lead to inconsistencies. With respect to

temporal information for instance, timetabling is an example of

a scheduling problem where inconsistencies can naturally occur

due to the lack of resources for certain tasks [24]. In particular,

timetabling deals with identifying the suitable temporal intervals

for a number of tasks that require certain limited in amount re-

sources. In the context of a university, an inconsistency can appear

https://doi.org/10.1145/3200947.3201021
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when two professors choose to teach the same class of students

at overlapping temporal intervals. The incosistency must then be

repaired by taking into account the available temporal intervals

and the preferences of the professors, and minimizing changes in

the timetable so as to distort its structure as little as possible. Thus,

solving the MAX-QCN problem is clearly at least as difficult as

solving the satisfiability checking problem.

Related Work
In [9], Condotta et al. propose a complete and generic branch and

bound algorithm based on techniques used in the literature for solv-

ing the satisfiability checking problem and the minimal labeling

problem of a given QCN. In particular, these techniques involve

the use of a tractable subclass of relations, a triangulation of the

constraint graph of the input QCN, and the partial closure under

weak composition as a filtering method. In [8] the authors view

this problem as a partial maximum satisfiability problem [18] and

introduce two related families of encodings based on a forbidden

covering with regard to the composition table of the considered

qualitative calculus. Intuitively, a forbidden covering expresses the

non-feasible configurations for three spatial or temporal entities.

Further, in [7] the authors present a particular tabu local search

method that involves first obtaining a partial scenario S of the given
QCN and then exploring neighboring refinements obtained by dis-

connecting a variable of S and repositioning it appropriately. This

approach combines the use of heuristics along with the manage-

ment of a tabu list of no-good scenarios in order to find the best

neighboring scenario at each execution step.

Contributions
In this paper we discuss the applicability of Evolutionary Algo-

rithms [5, 10–13, 21, 22, 27] (EA) enhanced by heuristics and adap-

tive fitness computation for solving the MAX-QCN problem. A

typical EA is composed of three essential elements [10, 15, 16]: (i ) a
population consisting of several individuals representing poten-

tial solutions of the given problem; (ii ) a mechanism for assessing

the adaptation of each individual of the population to his or her

external environment; (iii ) a mechanism of evolution composed

of operators allowing to eliminate certain individuals and to pro-

duce new individuals from the selected individuals. Our algorithm

consists in randomly generating an initial population of consistent

scenarios, and then realizing in an iterative manner an evolution of

this population by generating new scenarios from crossover opera-

tions applied on the better individuals of the population at hand.

Additionally, every time a new scenario is generated, an exploration

of its neighborhood is realized in order to obtain a better scenario.

Moreover, the EAMQ method integrates a diversification step to

avoid convergence towards a local minimum.

The paper is organized as follows. Section 2 is devoted to some

preliminaries about QSTR and the MAX-QCN problem. In Section

3, we introduce a hybrid evolutionary algorithm for theMAX-QCN
problem, called EAMQ . In Section 4, we describe how to obtain a

better scenario from a generated scenario by exploring its neighbor-

hood. In Section 5, we present some original crossover operators

for QCNs that allow us to generate a consistent scenario from two
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Figure 1: The base relations of IA.

consistent scenarios. In Section 6, we report some experimental

results about this method. Finally, we conclude the paper and give

some perspectives for future work in Section 7.

2 PRELIMINARIES
A binary spatial or temporal qualitative calculus considers a domain

D of spatial or temporal entities respectively and a finite set B of

jointly exhaustive and pairwise disjoint relations defined on that

domain called base relations [19]. Each base relation of B represents

a particular configuration between two spatial or temporal entities.

The set B contains the identity relation Id, and is closed under

the converse (
−1
). A (complex) relation corresponds to a union

of base relations and is represented by the set containing them.

Hence, 2
B
represents the set of relations. The set 2

B
is equipped

with the usual set operations (union and intersection), the converse

operation, and the weak composition operation. The converse of a

relation is the union of the converses of its base relations. The weak

composition ⋄ of b,b ′ ∈ B is the relation of 2
B
defined by b ⋄b ′ =

{b ′′ : ∃x ,y, z ∈ D such that x b y, y b ′ z and x b ′′ z}. For r , r ′ ∈ 2B,
r ⋄ r ′ is the relation of 2

B
defined by r ⋄ r ′ =

⋃
b ∈r,b′∈r ′ b ⋄ b

′
. In

the sequel, B̂ will denote the smallest subset of 2
B
that contains

the singleton relations of 2
B
and the universal relation and that is

closed under the operations
−1
, ⋄, and ∩. Consider the well known

temporal qualitative calculus introduced by Allen [1], called the

Interval Algebra (IA). Allen represents temporal entities as intervals

in the timeline and considers the set of 13 base relations BIA =
{eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi} (Figure 1).

Spatial or temporal information about a set of entities can be

represented by a qualitative constraint network (QCN), which is a

pair of a set of variables and a set of constraints. Each constraint

is defined by a relation of 2
B
and specifies the set of acceptable

qualitative configurations between two spatial or temporal vari-

ables. Formally, a QCN is defined as follows: a QCN is a pair

N = (V ,C ) where V is a non-empty finite set of variables, and

C is a mapping that associates a relation C (v,v ′) ∈ 2B with each

pair (v,v ′) of V × V . Further, C is such that C (v,v ) ⊆ {Id} and
C (v,v ′) = (C (v ′,v ))−1. The relation C (v,v ′) will also be denoted
by N [v,v ′].

Concerning a QCN N = (V ,C ), we have the following defini-

tions. A solution σ of N is a valuation σ of each variable V with

an element of D such that for every pair (v,v ′) of variables in
V , (σ (v ),σ (v ′)) satisfies a base relation belonging to the relation

C (v,v ′). N is consistent iff it admits a solution. N will be said to
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Figure 2: A QCN N = (V ,C ) of IA and a graph G that is a
triangulation of G(N ).
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Figure 3: A consistent G-scenario S (with G in Fig. 2) and a
solution of S.

be trivially inconsistent iff one of its constraints is defined by the

empty relation. A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a

QCN (V ,C ′) such thatC ′(v,v ′) ⊆ C (v,v ′) ∀v,v ′ ∈ V . A scenarioS
is aQCN such that each constraint is defined by a singleton relation.

A scenario S of N is a sub-QCN of N . Given a variable v ∈ V , the

relaxation of N w.r.t. v , denoted by N ↑v , is the QCN N = (V ,C ′)
defined by: for all v ′,v ′′ ∈ V , C ′(v ′,v ′′) = B if v ′ , v ′′, and
v ′ = v or v ′′ = v , and C ′(v ′,v ′′) = C (v ′,v ′′) otherwise. Given
a subset of variables V ′ ⊆ V , the projection of N on V ′, denoted
by N↓V ′ , is the QCN N restricted on V ′. In the sequel, N

[v,v ′]/r
with r ∈ 2B, denotes the modified QCN N for which the relation

defining the constraint between v and v ′ has been substituted by

r . Given two QCNs N 1 = (V 1,C1) and N 2 = (V 2,C2) such that

V 1 ∩V 2 = ∅, N 1 ∪ N 2
will denote in the sequel the QCN (V ,C )

defined by: V = V 1 ∪ V 2
, for all v,v ′ ∈ V 1

, C (v,v ′) = C1 (v,v ′),
for all v,v ′ ∈ V 2

, C (v,v ′) = C2 (v,v ′), and for all v,v ′ ∈ V such

that v ∈ V 1
and v ′ ∈ V 2

, or v ∈ V 2
and v ′ ∈ V 1

, C (v,v ′) = B.
Given two graphs G = (V ,E) and G ′ = (V ′,E ′), G is a subgraph

of G ′, denoted by G ⊆ G ′, iff V ⊆ V ′ and E ⊆ E ′. The graph G is a

chordal (or triangulated) graph iff each of its cycles of length > 3 has

a chord [14]. A partial scenario w.r.t.G , also called a G-scenario, is a

QCN (V ,C ) such that C (v,v ) = {Id} for all v ∈ V , C (v,v ′) = B for

all (v,v ′) < E, and |C (v,v ′) | = 1 for all (v,v ′) ∈ E. The constraint
graph of a QCN N = (V ,C ) is the graph (V ,E), denoted by G(N ),
for which (v,v ′) ∈ E iff C (v,v ′) , B.

Given a QCNN = (V ,C ) and a graphG = (V ,E),N is partially

⋄-consistent w.r.t. G or
⋄
G -consistent [6] iff for all (v,v ′), (v,v ′′),

(v ′′,v ′) ∈ E, we have that C (v,v ′) ⊆ C (v,v ′′) ⋄ C (v ′′,v ′). The
closure of N under

⋄
G -consistency, denoted by

⋄
G (N ), is the great-

est
⋄
G -consistent sub-QCN of N . This closure can be computed in

O (δ |E |) time [6, 28], where δ is the maximum degree of G. Note
that

⋄
G (N ) is equivalent to N (i.e. these QCNs admit the same set

of solutions). We will say that N is minimal w.r.t. G iff for each

(v,v ′) and each b ∈ N [v,v ′] there exists a consistent scenario S

of N such that S[v,v ′] = {b}. In the sequel, we will consider the

following property:

Definition 2.1. Given a set of base relations B, we will say that

partial ⋄-consistency implies minimality for B̂ iff for any trian-

gulated graph G = (V ,E) and any
⋄
G -consistent QCN N such

that N [v,v ′] = B for any (v,v ′) < E and N [v,v ′] ∈ B̂ for any

(v,v ′) ∈ E we have that N is minimal w.r.t. G.

Partial ⋄-consistency implies minimality for B̂ for many qualita-

tive calculi [20], such as IA and RCC8. Given a QCN N = (V ,C ),
the MAX-QCN problem is the problem of finding a consistent sce-

nario over V that minimizes the number of unsatisfied constraints

inN (or maximizes the number of satisfied constraints inN ). In or-

der to define MAX-QCN more formally, we introduce the operator

α , which takes as parameters two QCNs and returns the number

of non-overlapping constraints of these QCNs. Formally, given

two QCNs N = (V ,C ) and N ′ = (V ,C ′), α (N ,N ′) is defined by

α (N ,N ′) = 1

2
.|{(v,v ′) ∈ V ×V : v , v ′ and C (v,v ′)∩C ′(v,v ′) =

∅}|. Given N = (V ,C ), a solution of the MAX-QCN for N is a con-

sistent scenario S on V , called an optimal scenario of N , such that

there is no consistent scenario S′ on V with α (S,N ) > α (S′,N ).
Given a QCN N = (V ,C ), an optimal G-scenario of N is a con-

sistent G-scenario S such that there is no consistent G-scenario

S′ with α (S,N ) > α (S′,N ) and such that G is a triangulated

graph (V ,E) with G(N ) ⊆ G. Note that every consistent scenario

of an optimal G-scenario of a QCN N is an optimal scenario of N .

The EAMQ method that we will define in the sequel is adapted for

QCNs of a qualitative calculus Q for which partial ⋄-consistency

implies minimality for B̂. Due to this, the method can consider

partial scenarios rather than complete scenarios, much like the

methods proposed in [8, 9]. The usefulness of considering partial

scenarios is due to the faster treatment that results from discarding

some constraints.

3 AN EVOLUTIONARY ALGORITHM FOR
MAX-QCN

In this section, we present a hybrid evolutionary algorithm for

solving the MAX-QCN problem, denoted by EAMQ (Evolutionary

Algorithm forMAX-QCN). EAMQ takes asmain parameters aQCN
N = (V ,C ) and a triangulationG = (V ,E) ofG(N ). TheQCNN is

assumed to be defined on a set of base relations B for which partial

⋄-consistency implies minimality for B̂.
Succinctly, to characterize a consistent G-scenario that maxi-

mizes the number of satisfied constraints of N , EAMQ randomly

generates an initial population of consistent G-scenarios, and then

realizes in an iterative manner an evolution of this population by

generating new G-scenarios from crossover operations applied on

the best individuals of the current population. Additionally, at each

generation of a new scenario, an exploration of its neighborhood is

realized in order to find a better scenario. Moreover, EAMQ inte-

grates a diversification step to avoid convergence towards a local

minimum. Now, we detail the different steps of EAMQ .

Initialization Step. In this step (see lines 2-4 of the function

EAMQ), the multiset SP is initialized by an initial population of

cardP consistent G-scenarios generated partly at random, with

cardP , a strictly positive integer, given as parameter to EAMQ . The
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Function EAMQ(N ,G,cardP ,cardBest ,divT ,timeoutL)

in :A QCN N = (V , C ), a triangulation G = (V , E ) of G(N ), and four

positive integers cardP , cardBest , divT , t imeoutL.
output :A consistent G-scenario on V .

1 begin
// Initialization Step

2 SP ← ∅; nbLoops ← 0;

3 for i ← 1 to cardP do
4 S ← randomScenario(G ); S ← exploreNeighborhood(N , S, G );

SP ← SP ∪ {S}
// Main loop

5 while the timeout limit t imeoutL is not reached do
6 nbLoops ← nbLoops + 1;

// Selection Step

7 SBest ← selectBestScenarios(SP, cardBest );
// New Generation Step

8 if (nbLoops modulo divT ) , 0 then
// Crossovers Step

9 SG ← ∅;
10 for i ← 1 to cardP − cardBest do
11 Select randomly S1 and S2 from SBest ;
12 S ← crossover(N , G, S1, S2 );

S ← exploreNeighborhood(N , S, G );
13 SG ← SG ∪ {S}

14 SP ← SBest ∪ SG ;
15 else

// Diversification Step

16 SP ← {selectBestScenarios(SBest, 1) };
17 for i ← 1 to cardP − 1 do
18 S ← randomScenario(G );

S ← exploreNeighborhood(N , S, G );
19 SP ← SP ∪ {S}

20 return selectBestScenarios(SBest, 1);

generation of each new partial scenario S is made in two phases.

In a first phase, S is initialized by a randomly generated consistent

G-scenario using the function randomScenario. In a second phase

(line 4), S is possibly replaced by a better neighbor of S, i.e. a
scenario belonging to the neighborhood of S and satisfying strictly

more constraints of N than S. This operation is realized by the

function exploreNeighborhood, which will be detailed in the next

section.

Selection Step. In the first part of the main loop of EAMQ a

selection of cardBest best scenarios belonging to the multiset SP
is realized, where cardBest is a strictly positive integer given as

parameter to EAMQ such that cardBest < cardP . This treatment is

realized by the function selectBestScenarios. Moreover, the selected

scenarios will be placed in the multiset SBest. After this step, for
each scenario S ∈ SBest and each scenario S′ ∈ SP \ SBest, we have
α (N ,S) ≤ α (N ,S′).

Crossovers Step. In this step, the previously selected scenarios

at the selection step are used to generate new scenarios in order

to form a part of the new population corresponding to the mul-

tiset SG. Each new scenario S is first generated with a crossover

operator, called, in a generic way, crossover, which is applied on

two randomly selected scenarios of the multiset SBest. In the sequel

of the paper, some of the crossover operators will be presented

in detail. Note that similarly to the generation of scenarios in the

initialization step, this generation is completed by the search of a

better scenario than S in its neighborhood. The population of the

next iteration of the main loop will be formed by the scenarios of

Function randomScenario(G)
in :A chordal graphG = (V , E ).
output :A consistentG-scenario onV randomly generated.

1 begin
2 S ← ⊤V ; /*⊤V is the QCNon V whose each constraint is B */

3 while there exists (v, v′) ∈ E such that |S[v, v′] | > 1 do
4 Select randomly (v, v′) ∈ E such that |S[v, v′] | > 1; Select randomly a base

relation b ∈ S[v, v′];
5 S ← S

[v,v′]/{b } ; S ←
⋄
G (S);

6 return S;

SBest and the new scenarios saved into SG, unless a diversification
treatment is triggered.

Diversification Step. This step is triggered every divT number

of loops, where divT is a strictly positive integer given as parameter

to EAMQ . The aim of this step is to avoid a convergence towards

a local minimum during the search, more particularly to avoid a

population of scenarios that do not allow obtaining better scenarios

in the sequel of the search. The treatment of this step consists in

keeping in the next population one of the best scenarios from the

previously selected scenarios, i.e. from the scenarios SBest. The aim
of this is to obtain a future population that will not be better (in

term of optimal value) than the current population. In addition to

this scenario, the cardP − 1 other scenarios of the next population
are randomly generated in a similar manner to the one used in the

initialization step.

To end this section, we examine the function randomScenario.
This function takes as parameter a chordal graph G = (V ,E) and
builds in an iterative manner a G-scenario formed by base relations

of the set B. At the beginning of each iteration we can notice that

the QCN S is partially ⋄-consistent w.r.t. the chordal graph G and

not trivially inconsistent. Hence, from the assumption made on

the set of base relations B, S is minimal w.r.t. G. Consequently, for
each base relation b ∈ S[v,v ′] and for all (v,v ′) ∈ E there exists a

consistent scenario of S such that the constraint between v and v ′

is defined by {b}. From this, we can assert that the QCN S at the

end of each iteration is necessarily not trivially inconsistent and

⋄
G -consistent. Moreover, we can notice that the QCN S returned

is a QCN whose constraints are defined by singleton relations.

Thus, we can assert that the QCN S returned by the function

randomScenario is a G-scenario that is not trivially inconsistent

and
⋄
G -consistent, where G is a chordal graph. Again, from the

assumption made on B we can conclude that the QCN S returned

by the function randomScenario is a consistent G-scenario. We can

also notice that the function randomScenario realizes at most |E |
iterations. We have the following result:

Proposition 3.1. LetG = (V ,E) be a chordal graph. By assuming
that the set of base relationsB is such that partial⋄-consistency implies
minimality for B̂, we have that the function randomScenario returns
a consistent G-scenario on V in polynomial time.

4 NEIGHBORHOOD EXPLORATION
Regarding the proposed method, a new scenario in the considered

population can be randomly generated from scratch or obtained

from a crossover between two selected scenarios. In these two cases,

an additional treatment on the initially generated scenario is real-

ized in order to obtain a better scenario. This treatment, which one

could consider as a systematic mutation step, consists in exploring
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Function exploreNeighborhood(N ,S,G)

in :A QCN N = (V , C ), a triangulationG = (V , E ) of G(N ), a consistent
G-scenario S = (V , C′).

output :A best neighbor of S w.r.t. N andG better than S, or S itself if such a

scenario does not exist.

1 begin
2 bestNg← S; bestα ← α (N , S);

3 foreach v ∈ V do exploreNeighborhoodAux(N ,G ,S↑v ) ;

4 return bestNg;

Procedure exploreNeighborhoodAux(N ,G,N ′)

in :Two QCNs N = (V , C ), N ′ = (V , C′) and a triangulationG = (V , E ) of
G(N ) and G(N ′).

1 begin
2 N ′ ← ⋄G (N ′); α ← α (N , N ′);

3 if α ≥ bestα then return;
4 Select (v, v′) ∈ E such that N ′[v, v′] is not a singleton relation;

5 if such a pair (v, v′) exists then
6 Select a base relation b ∈ N ′[v, v′];
7 exploreNeighborhoodAux(N ,G ,N ′

[v,v′]/{b } );

8 exploreNeighborhoodAux(N ,G ,N ′
[v,v′]/(N′[v,v′]\{b }) );

9 else
10 bestNg← N ′; bestα ← α ;

the neighborhood of the initially generated scenario to possibly

characterize a better scenario satisfying strictly more constraints

of the considered QCN than the former scenario. If such a better

scenario exists, it will supersede the initially generated scenario.

The notion of neighborhood of a consistent scenario that we use is

the one proposed in [7] and corresponds to the set of the consistent

scenarios that can be obtained by disconnecting a variable and repo-

sitioning it in the considered consistent scenario. More formally,

given a consistent G-scenario S and a graph G, the set of the neig-
bours of S w.r.t.G , denoted by Nb(S,G ), is defined by: Nb(S,G ) =⋃
v ∈V {S

′
: S′ , S and S′ is a consistent G-scenario of S↑v }.Given

a G-scenario S = (V ,C ), a graph G = (V ,E), and a QCN N ,

the set of best neighbors of S w.r.t. N is the subset of the par-

tial scenarios of Nb(S,G ) that maximize the number of satisfied

constraints of the considered QCN N . By denoting this subset by

BestNb(S,G,N ) we have BestNb(S,G,N ) which corresponds to

the set {S ∈ Nb(S,G ) such that there is no S′ ∈ Nb(S,G ) with
α (N ,S) > α (N ,S′)}. By adapting the algorithm bestNeighbors
proposed in [7], which allows us to compute the set of partial scenar-

iosBestNb(S,G,N ), we propose the function exploreNeighborhood,
which allows us to characterize a scenario of the aforementioned

subset that is better than S (if such a scenario exists).

The function exploreNeighborhood receives three parameters,

namely, aQCNN = (V ,C ) for which we want to solveMAX-QCN,
a triangulationG = (V ,E) ofG(N ), and a consistent G-scenarioS =
(V ,C ′) for which we want to compute a better scenario through an

exploration in its neighborhood. In a first step, exploreNeighborhood
initializes the global variables bestNg by S and bestα by the num-

ber of constraints of N that are unsatisfied by S. In the case

where there is no better neighbor than S, these variables will not

change and S will correspond to the returned partial scenario.

In a second step (line 3), the relaxation of the partial scenario S

w.r.t. each variable v ∈ V is considered in order to search a bet-

ter neighbor with respect to this relaxation. This search is done

through a call to the recursive function exploreNeighborhoodAux.
This function has three parameters:N ,G , andN ′. The parameters

N and G are similar to the parameters of exploreNeighborhood.
The third parameterN ′ is a QCN with the same set of variables as

N and such that G is also a triangulation of G(N ′). The objective
of the function exploreNeighborhoodAux is to find a consistent

G-scenario of N ′ that is better than bestNg. At line 2, function

exploreNeighborhoodAux prunes some non-feasible base relations

of N ′ by enforcing
⋄
G -consistency on N ′. We can show that the

QCN N ′ given as parameter is always a consistent QCN whose

constraints are defined by relations of B̂. Moreover, we know that

G is a triangulation of G(N ′) and the set of base relations B is such

that partial ⋄-consistency implies minimality for B̂ for any QCN
defined on the subclass B̂. From this, we can assert that enforcing

⋄
G -consistency on N ′ makes this QCN minimal w.r.t the graph G.
Hence, after enforcing

⋄
G -consistency on N ′ we have that N ′ is

non trivially inconsistent and each base relation of its constraints

is feasible (i.e. there exists at least one consistent scenario of N ′

satisfying it). After enforcing
⋄
G -consistency on N ′, the integer α

of non-overlapping constraints between N and N ′ is computed.

In the case where α ≥ bestα we know that all the consistent G-

scenarios cannot be strictly better than bestNg, consequently the

treatment terminates (line 3). In the contrary case, a pair of vari-

ables (v,v ′) ∈ E such that the relationN ′[v,v ′] is a non-singleton
relation is selected. If such a pair of variables does not exist we can

assert that N ′ is a consistent G-scenario that is better than bestNg.
Hence, N ′ becomes the best found G-scenario (line 10). In the case

where such a pair of variables exists, the search continues by explor-

ing the twoQCNsN ′
[v,v ′]/ {b } andN

′
[v,v ′]/(N ′[v,v ′]\{b }) , which are

two strict subQCNs of N ′ that cover the consistent G-scenarios of
N ′.

Proposition 4.1. Let N = (V ,C ) and S = (V ,C ′) be two QCNs
of a qualitative calculus for which partial ⋄-consistency implies mini-
mality for B̂ andG = (V ,E) a triangulation of G(N ) such that S is a
consistent G-scenario. Then, the function exploreNeighborhood with
parameters N , S, G returns a scenario of the set BestNb(S,G,N )
in the case where BestNb(S,G,N ) , ∅, and the scenario S in the
contrary case.

5 CROSSOVER OPERATORS FOR QCNS
In this section, we present some recombination operators that,

given two consistent scenarios, build a new consistent scenario that

integrates parts of the given scenarios, which we will refer to as

the parents of the new scenario. The main difficulty concerning a

crossover operator for QCNs is generating a good scenario fast; a

good scenario is a scenario that is consistent and integrates the best

parts of its parents w.r.t. to the unsatisfied constraints of the QCN
for which we want to solve the MAX-QCN problem. For this pur-

pose, we propose five crossover operators that are divided into two

groups. The first group corresponds to the operators crossConsA
and crossConsB whereas the second corresponds to the operators

crossVarsA, crossVarsB, and crossVarsC. The main difference be-

tween these operators is that, given two scenarios, a crossCons
operator considers the constraints of these two scenarios individu-

ally in order to build a new scenario whereas a crossVars operator
considers as a first step the constraints of S1 and S2 with respect

to a selection of subsets of variables. Figure 4 and Figure 5 illustrate

these two approaches respectively.
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Figure 4: Illustration of a crossCons operator that builds a
scenario S3 from two scenarios S1 and S2 by individually
selecting constraints from S1 and S2 (viz., the constraints
marked by a star).
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Figure 5: Illustration of a crossVars operator that builds a
scenario S3 from two scenarios S1 and S2 by selecting (as
a first step) constraints of S1 and S2 with respect to some
subsets of variables.

Function crossConsA(N ,G,S1,S2)
in :A QCN N = (V , C ), a graphG = (V , E ) triangulation of G(N ), two

consistentG-scenarios S1 and S2 defined onV .

output :A consistentG-scenario onV .

1 begin
2 S ← ⊤V ;

3 while there exists (v, v′) ∈ E such that |S[v, v′] | > 1 do
4 Select randomly (v, v′) ∈ E such that |S[v, v′] | > 1;

5 Select randomly (S′
1
, S′

2
) ∈ {(S1, S2 ), (S2, S1 ) };

6 if S[v, v′] ∩ N [v, v′] , ∅ then r el ← S[v, v′] ∩ N [v, v′] ;
7 else r el ← S[v, v′] ;
8 if S′

1
[v, v′] ∩ r el , ∅ then r el ← S′

1
[v, v′] ∩ r el ;

9 else if S′
2
[v, v′] ∩ r el , ∅ then r el ← S′

2
[v, v′] ∩ r el ;

10 Select randomly a base relation b ∈ r el ; S ← S
[v,v′]/{b } ; S ←

⋄
G (S);

11 return S;

The crossover operator crossConsA. The operator crossConsA
builds step by step a consistent scenario S from two parents S1

and S2 defined on a set V in an incremental way (see the corre-

sponding function). Starting from an initialization of S by theQCN
⊤V (the QCN on the set of variables V for which all constraints

on two different variables are defined by the universal relation

B), step by step, this operator refines S until each one of its con-

straints is defined by a singleton relation. At each step, a pair of

Function crossVarsA(N ,G,S1,S2)
in :A QCN N = (V , C ), a graphG = (V , E ) triangulation of G(N ), two

consistentG-scenarios S1 and S2 defined onV .

output :A consistentG-scenario onV .

1 begin
2 V1 ← V ;V2 ← ∅;
3 while |V1 | > |V2 | do
4 Select randomly v ∈ V1 ;
5 V1 ← V1 \ {v };V2 ← V2 ∪ {v };

6 S ← (S1 )↓V
1
∪ (S2 )↓V

2
;

7 while there exists (v, v′) ∈ E such that |S[v, v′] | > 1 do
8 Select randomly (v, v′) ∈ E such that |S[v, v′] | > 1;

9 if S[v, v′] ∩ N [v, v′] , ∅ then r el ← S[v, v′] ∩ N [v, v′];
10 else r el ← S[v, v′];
11 Select randomly a base relation b ∈ r el ; S ← S

[v,v′]/{b } ; S ←
⋄
G (S);

12 return S;

Function crossVarsC(N ,G,S1,S2)
in :A QCN N = (V , C ), a graphG = (V , E ) triangulation of G(N ), two

consistentG-scenarios S1 and S2 defined onV .

output :A consistentG-scenario onV .

1 begin
2 V1 ← ∅;V2 ← ∅;
3 foreach v ∈ V do
4 if there exists v′ ∈ V such that (v, v′) ∈ E andS1[v, v′] ∩ N [v, v′] = ∅ then

V2 ← V2 ∪ {v } ;
5 else V1 ← V1 ∪ {v } ;

6 S ← (S1 )↓V
1
∪ (S2 )↓V

2
;

7 while there exists (v, v′) ∈ E such that |S[v, v′] | > 1 do
8 Select randomly (v, v′) ∈ E such that |S[v, v′] | > 1;

9 if S[v, v′] ∩ N [v, v′] , ∅ then r el ← S[v, v′] ∩ N [v, v′];
10 else r el ← S[v, v′];
11 Select randomly a base relation b ∈ r el ; S ← S

[v,v′]/{b } ; S ←
⋄
G (S);

12 return S;

variables (v,v ′) of S for which the corresponding constraint is

defined by a non singleton relation is randomly selected, and the

two consistent scenarios S1 and S2 are randomly ordered in a pair

(S′
1
,S′

2
). Then, the relation rel containing the future considered

possible base relations for the constraint of S between the vari-

ables v and v ′ is built. The relation rel will be defined by the first

non empty relation among the following ordered list of relations

: S[v,v ′] ∩ N [v,v ′] ∩ S′
1
[v,v ′], S[v,v ′] ∩ N [v,v ′] ∩ S′

2
[v,v ′],

S[v,v ′] ∩ S′
1
[v,v ′], S[v,v ′] ∩ S′

2
[v,v ′] and S[v,v ′]. By this defi-

nition, we try to prioritize some constraints provided by the two

parents S1 and S2. After the relation rel has been defined, a base

relation b ∈ rel is randomly chosen to define the new constraint of

S between v and v ′. In order to maintain S globally consistent, the

closure w.r.t. a triangulation G of N is realized at the end of each

main loop.

The crossover operator crossConsB. The operator crossConsB
is very similar to the operator crossConsA; it differs from the lat-

ter operator in the order of the constraints to be handled in the

main loop. Indeed, the operator crossConsB, contrary to the op-

erator crossConsA, selects in priority in the main loop a pair of

variables (v,v ′) among the set of pairs of variables (v,v ′) such that

S[v,v ′] ∩N [v,v ′] is a non empty relation before considering the

set of pairs of variables (v,v ′) such that S[v,v ′] ∩ N [v,v ′] is an
empty relation.

The crossover operator crossVarsA. With respect to the oper-

ator crossVarsA, another policy is used to integrate parts of the two
parents S1 and S2 into a consistent scenario S. Indeed, contrary to

the two previous operators, the operator crossVarsA integrates into
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S a projection of S1 and a projection of S2 w.r.t. a set of variables

V1 and a set of variables V2 respectively such that V = V1 ∪V2. By
examining the function corresponding to the operator crossVarsA,
we can note that V1 and V2 are randomly defined and in a balanced

manner (i.e. the cardinalities of these two sets differ in number by

not more than one). After integrating the two projections (S1)↓V1

and (S2)↓V2
into S by initializing S by the union of these two

projections, the treatment of the operator crossVarsA consists in

refining S into a consistent scenario with a treatment similar to

the one used by the operator crossConsA.

The crossover operator crossVarsB. The operator crossVarsB
is very similar to the operator crossVarsA; it differs from the latter

operator in the combination of the projections for the initialization

of S. Indeed, for the operator crossVarsB, S is initialized by the

QCNN1 = (S1)↓V1
∪(S2)↓V2

or by theQCNN2 = (S1)↓V2
∪(S2)↓V1

according to the numbers of non overlapping constraints α1 and
α2 between N and respectively the QCNs N1 and N2. In the case

where α1 ≤ α2, S is initialized by N1. In the contrary case, S is

initialized by N2.

The crossover operator crossVarsC. This operator is simi-

lar to the two previous operators, it differs from the operator

crossVarsA in the projections considered for the initialization of

S and more particularly in the definitions of the used sets of

variables V1 and V2. Indeed, for the operator crossVarsC, V1 is

defined by the maximal subset of variables of V which are not

implied by a constraint of S1 not satisfying a constraint of the

QCN N . More formally, V1 =
⋃
{v : there not exist (v,v ′) ∈

E such that S[v,v ′] ∩ N [v,v ′] = ∅} and V2 = V \ V1. Intuitively,
this operator tries to complete the satisfactory constraints of S1 by

constraints of S2 in order to generate a new consistent scenario.

Concerning the proposed crossover operators, we have the fol-

lowing property:

Proposition 5.1. Let N = (V ,C ), S1 = (V ,C1) and S2 =
(V ,C2) be three QCNs of a qualitative calculus for which partial
⋄-consistency implies minimality for B̂ and G = (V ,E) a triangula-
tion ofG(N ) such thatS1 andS2 are two consistent G-scenarios. Then,
for each crossover operator Crossover ∈ {crossConsA, crossConsB,
crossVarsA, crossVarsB, crossVarsC}, the operator Crossover with
parameters N , G, S1, S2 returns a consistent G-scenario.

6 EXPERIMENTS
In the conducted experiments, we consider QCNs of IA used in

the experiments reported in [7, 8]. These QCNs are randomly gen-

erated using the model A(n,d, s ) proposed by Nebel in [23] and

extensively used in the literature concerning qualitative constraint

networks. The parameter n of this model is the number of variables

of the generated QCNs, d is the density of constraints defined by a

relation other than the trivial relation (i.e. B), and s is the average
number of base relations in each constraint. For the number of

variables n = 20, the average number of base relations s = 6.5 and

the density of constraints d ∈ {8, 9, 10, 11, 12, 13, 14}, 10 instances
were generated. Hence, we conducted experiments on 70 different

QCNs.
Concerning triangulations of the constraint graphs of QCNs, we

also use the same ones as those used in [7, 8]. These triangulations

were generated using a greedy triangulation algorithm (see the

GreedyFillIn heuristic in [4]). Except if mentioned otherwise, given

a QCN N as parameter to EAMQ , the parameter corresponding to

the graphG is computed using this triangulation algorithm. More-

over, our experiments have been conducted on a Quad-core Intel

XEON X5550 with 32Gb of memory and the method EAMQ has

been implemented in Java.
1

The first part of our analysis concerns a comparison between the

different crossovers operators. In Table 1 we report the results of ex-

ecutions of EAMQ with configurations that differ in the cardinality

of the population (cardP ), the number of best scenarios selected at

each generation (cardBest ), and the number of loops between each

diversification (divT ). The timeout limit has been fixed to 180 sec-

onds. By examining the number ofQCNs for which a scenario with

the exact optimal number of unsatisfied constraints has been found

(the value #F ), we note that, in general, the operators crossConsA
and crossConsB outperform the other operators. The operators

crossVarsA and crossVarsB are the worst performers. This obser-

vation is confirmed by the examination of the value difov, which
corresponds to the average of the difference beetween the num-

ber of constraints unsatisfied by the scenario returned by EAMQ
and the number of constraints unsatisfied by an optimal scenario

(i.e. difov = 1

70
Σi ∈1, ...,70 (α (Ni ,S

found
i ) − α (Ni ,S

opt
i )). Concern-

ing this indicator, the best values for the crossovers crossConsA,
crossConsB, crossVarsA, crossVarsB, and crossVarsC are respec-

tively 0.92, 0.92, 1.62, 1.37, and 1.48. Now, by considering the

value #B, which corresponds to the number of QCNs for which the

crossover operation is better than the other crossover operators

(by comparing the difference between the number of constraints

unsatisfied by the scenario returned and the value of an optimal

scenario and by using the running time as a tie-breaker), we notice

that in general crossConsB outperforms the other operators. The

best performance of this operator with respect to the other oper-

ators is clearly confirmed by comparing the different indicators

concerning the portfolios (the best values of all configurations are

taken into account) of the different crossover operators. To end this

first analysis, we can notice that performances of the different op-

erators are not the same for a given configuration. It seems that the

operators crossVarsA, crossVarsB and crossVarsC are performing

better with a rather great value of divT (400,600), whereas for the

operators crossConsA, crossConsB smaller values seem to lead to

better performances. Concerning the size of the considered popula-

tion, for almost all the crossover operators a size of less than 200

leads to better performance.

The second part of our analysis focuses on the best configura-

tions for each of the crossover operators. For each operator, we

select a configuration for which #F is maximal and a configuration

for which difov is minimal. In Table 1, these retained configura-

tions correspond to lines with values in bold. Focusing on these

selected configurations, experiments have been conducted with a

timeout limit of 20 minutes. The corresponding results are reported

in Table 2. As with the previous analysis, we clearly constate that

the crossover operators crossConsA and crossConsB greatly out-

perform the other operators. By considering the indicator difov, we
notice that the performance gaps between the different operators

1
The program and the benchmark can be found with the authors on request.
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crossConsA crossConsB crossVarsA crossVarsB crossVarsC
cP cBest divT #F difov #B #F difov #B #F difov #B #F difov #B #F difov#B
60 20 50 27 0.94 29 29 0.98 34 6 3.2 1 8 2.52 1 15 2.32 5

60 20 100 27 0.92 26 27 1.0 33 11 2.52 3 14 2.02 2 16 2.41 6

60 20 200 23 1.07 23 24 1.08 33 12 2.01 2 15 1.68 3 17 2.35 9

60 20 400 22 1.18 23 26 1.04 30 17 1.67 3 16 1.52 5 16 2.42 9

60 20 600 19 1.22 23 24 1.12 30 15 1.62 4 18 1.52 6 15 2.28 7

100 20 50 26 1.04 33 24 0.98 29 9 2.4 0 13 1.91 3 16 2.6 5

100 20 100 22 1.11 32 24 1.04 26 12 2.04 5 14 1.65 3 17 2.58 4

100 20 200 22 1.18 25 26 0.98 30 18 1.8 5 14 1.44 5 17 2.67 5

100 20 400 20 1.25 28 24 1.05 27 18 1.71 4 17 1.37 7 18 2.7 4

100 20 600 21 1.24 24 25 1.07 26 21 1.64 8 16 1.37 7 17 2.5 5

160 30 50 12 2.48 24 14 2.41 19 1 8.92 0 2 7.15 0 14 2.15 27

160 30 100 17 1.57 25 18 1.42 29 2 7.04 0 2 5.78 0 16 2.02 16

160 30 200 29 0.94 29 25 1.01 30 3 5.61 0 2 4.01 0 20 1.74 11

160 30 400 27 0.95 29 27 0.94 32 3 4.15 0 5 2.87 0 21 1.74 9

160 30 600 26 1.0 27 26 0.94 33 3 3.7 0 8 2.57 0 24 1.62 10

160 40 50 16 1.81 22 17 1.48 30 2 7.6 0 2 6.47 0 11 1.94 18

160 40 100 25 1.22 27 24 1.04 35 2 6.18 0 2 5.05 0 11 1.87 8

160 40 200 29 0.95 28 26 0.94 31 3 4.67 0 4 3.54 0 19 1.62 11

160 40 400 28 0.95 28 26 0.92 32 4 3.51 0 6 2.64 0 19 1.65 10

160 40 600 25 1.0 24 25 0.98 32 7 2.84 2 10 2.34 0 18 1.62 12

260 40 50 11 3.0 17 15 3.22 25 1 9.51 0 2 7.94 0 10 2.14 28

260 40 100 19 1.82 21 18 1.75 35 2 7.7 0 2 6.15 0 14 1.92 14

260 40 200 23 1.31 22 24 1.12 37 2 6.01 0 2 4.8 0 14 1.77 11

260 40 400 23 1.07 26 26 1.08 31 2 4.65 0 4 3.54 0 20 1.52 13

260 40 600 27 1.0 25 23 1.08 33 3 4.04 0 5 3.01 0 20 1.48 12

260 60 50 18 1.94 23 15 1.92 25 1 8.1 0 2 6.88 0 14 2.05 22

260 60 100 26 1.3 28 22 1.12 29 2 6.38 0 2 5.4 0 16 1.8 13

260 60 200 26 1.1 27 26 0.94 31 2 5.07 0 3 3.81 0 17 1.67 12

260 60 400 28 1.01 30 23 0.98 28 3 3.77 0 4 2.84 0 19 1.52 12

260 60 600 25 1.07 29 24 1.04 27 6 3.38 0 7 2.52 0 19 1.48 14

Portfolio 44 0.44 22 48 0.37 30 29 1.0 6 27 0.91 2 41 0.55 10

Table 1: Results of the execution of EAMQ with different configurations (one configuration by line in the table) for each
crossover operator. The timeout limit is 180 seconds and the GreedyFillIn triangulations are used for all the configurations.
The parameters cardP , cardBest , and divT correspond to the columns titled cP , cBest , and divT respectively. #F corresponds to
the number of QCNs for which EAMQ found an optimal partial scenario. difov is the average of the difference between the
number of constraints unsatisfied by the scenario returned and the number of constraints unsatisfied by an optimal scenario.
#B corresponds to the number of QCNs for which the considered crossover is better than the other crossovers.

Timeout limit : 20 mn Timeout limit : 3 h

cP cBest divT Crossover #F difov #B Time #F difov #B Time
60 20 100 crossConsA 36 0.68 20 173.4 44 0.47 18 1104.4

160 30 200 crossConsA 35 0.75 3 134.6 41 0.62 3 605.16

60 20 50 crossConsB 36 0.74 21 105.8 47 0.41 22 1017.01

160 40 400 crossConsB 37 0.7 7 121.2 41 0.5 7 643.4

60 20 600 crossVarsA 24 1.11 3 180.6 30 0.81 3 1437.6

100 20 600 crossVarsA 25 1.17 6 175.8 31 0.88 7 1026.1

60 20 600 crossVarsB 22 1.18 1 148.5 29 0.85 0 1354.6

100 20 400 crossVarsB 23 1.11 2 136.6 34 0.72 3 1396.5

160 30 600 crossVarsC 27 1.25 6 135.9 30 0.97 6 796.1

260 40 600 crossVarsC 22 1.24 1 118.7 26 0.95 1 931.4

Portfolio 57 0.18 – 92.2 61 0.12 – 284.6

Table 2: Results of the execution of EAMQ on the 70 considered QCNs of IA with different selected configurations for each
crossover operator with a timeout limit equal to 20minutes and a timeout limit equal to 3 hours.

are significant enough. By considering the portfolio, we constate

that for a timeout limit of 20 minutes an optimal scenario has been

characterized for 57 QCNs. This could be explained by hard in-

stances belonging to the used benchmark [8].

Now, our analysis concerns two of the main ingredients of the

proposed method EAMQ , namely the use of triangulations of the

constraint graphs of the QCNs, and the neighborhood exploration

that is realized at each generation of a newQCN. In order to do this,

we compare EAMQ with different variations. For these experiments,

we focus on the first configurations already treated in the results

reported in Table 1 by using the crossover operator crossConsA and

a timeout limit equal to 180s . By examining the reported results in

Table 3 and by comparing the values of the indicators #F and difov,
we constate that EAMQ using both the triangulations obtained by

the algorithm GreedyFillIn and the neigborhood exploration tech-

nique (column titled withoutGIF&NE), greatly outperforms EAMQ
using just the neigborhood exploration technique (column titled

without GIF) and EAMQ using just GreedyFillIn triangulations

(column titled without NE). This observation has also been made

for all configurations with which we have experimented, these
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with GIF&NE without GIF without NE
cP cBest divT #F difov #F difov #F difov
60 20 50 27 0.94 13 1.45 14 1.85

60 20 100 27 0.92 11 1.57 13 1.85

60 20 200 23 1.07 13 1.54 10 1.88

60 20 400 22 1.18 11 1.65 12 2.07

60 20 600 19 1.22 13 1.58 10 2.01

Portfolio 32 0.74 17 1.31 16 1.51

Table 3: Results of the execution of EAMQ on the 70 considered QCNs of IA for configurations corresponding to cardP = 60,
cardBest = 20, the crossover crossConsA, and a timeout limit of 180 seconds.GFI denotes the use of theGreedyFillIn triangulation
heuristic. NE denotes the use of the neigbourhood exploration technique.

#B

cP cBest divT Crossover 180 s 20 mn

60 20 100 crossConsA 21 19

160 30 200 crossConsA 2 2

60 20 50 crossConsB 19 15

160 40 400 crossConsB 5 5

60 20 600 crossVarsA 0 1

100 20 600 crossVarsA 4 3

60 20 600 crossVarsB 1 0

100 20 400 crossVarsB 1 1

160 30 600 crossVarsC 4 5

260 40 600 crossVarsC 1 1

QLS 12 18

Table 4: Comparison of EAMQ with QLS.

results are not reported here due to space limitations. This experi-

mental evaluations seems to validate the use of triangulations of the

constraint graphs of the QCNs and the neighborhood exploration

technique in the context of the proposed method EAMQ .

The last part of our analysis concerns a comparison between our

approach and the one proposed in [7] that proposes a local search

algorithm called QLS in order to solve theMAX-QCN problem. For

this analysis, we focus on the configurations of EAMQ previously

selected and compare them with QLS with different timeout limits.

By examining the results concerning the indicator #B reported in

Table 4 we can constate that two of the ten selected configurations

of EAMQ outperform QLS for a timeout limit of 180 seconds and

one of them is better than QLS for a timeout limit of 20 minutes.

7 CONCLUSION
In this paper we focused on theMAX-QCN problem [9]. To solve

this problem, we proposed an original hybrid evolutionary algo-

rithm, whichwe call EAMQ . This algorithm integrates several novel

ingredients in the context of QCNs such as crossover operators,

neighborhood exploration, diversification, and triangulations of

QCNs. The preliminary experiments that we have conducted with

temporal qualitative constraint networks of the Interval Algebra,

show the interest of our approach for solving the MAX-QCN prob-

lem. Future work consists of conducting experiments with calculi

other than IA, such as RCC8, and with largerQCNs (whose number

of variables is greater than 20). Another perspective is to integrate

the techniques implemented in EAMQ in a complete algorithm for

solving the MAX-QCN problem.
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