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Abstract
In recent years, propositional logic encodings for HTN plan-
ning have seen many improvements and resulted in compet-
itive planners. Modeling all kinds of features and constraints
imposed by the task hierarchy, however, is very challenging
in propositional logic, and has recently led to including pre-
processing steps before creating the SAT formulas. Instead of
using propositional logic, classical planning problems have
previously been encoded as constraint satisfaction problems
(CSPs), which are more expressive. Indeed, CSPs allow a
more natural and convenient way of representing all con-
straints of the task hierarchy, yet only little work on using
constraint solving methods in HTN planning exist. Hence, in
this paper, we outline first ideas for encoding an HTN plan-
ning problem into a single CSP. Our motivation lies in obtain-
ing constraint networks for HTN planning that we can solve
with state-of-the-art solvers.

Introduction
Many real-world tasks deal with some form of constraints.
As such, constraint satisfaction techniques have proven suc-
cessful as an underlying framework for solving problems of
various domains. Constraints, in this context, can express a
large bandwidth of problem features, from simple ordering
relations to modeling complex numerical resource alloca-
tions. Despite its success in many fields, constraint satisfac-
tion methods have been applied only sparsely in the field of
AI planning, especially in hierarchical task network (HTN)
planning. Instead, recently, HTN planning problems have
often been encoded as a sequence of propositional satisfi-
ability (SAT) problems (Behnke, Höller, and Biundo 2018,
2019a; Schreiber et al. 2019; Schreiber 2021). Since HTN
planning is generally undecidable, one cannot simply com-
pile the problem into propositional logic, but rather fix the
number of possible actions and then employ SAT techniques
to verify whether there exists a plan of a particular length.
This process may be repeated for a series of compilations of
increasing length (Bercher, Alford, and Höller 2019).

Compared to a SAT compilation, formulating a planning
problem as a constraint satisfaction problem (CSP) can be
characterized as more natural or convenient (Nareyek et al.
2005). This is mostly attributed to the fact that CSPs sup-
port higher-level constraints that are able to directly repre-
sent domain-specific knowledge. In SAT, for example, quan-
titative information in the form of discrete numbers may be

captured in a propositional formula by using a variable for
each value of the discrete domain, but doing so will result in
loosing the natural ordering information of the numbers.

As noted by Barták and Toropila (2008), early constraint
models for planning had their origins in SAT and thus were
only using Boolean variables and constraints in form of
logical formulas. Then, they proposed multiple constraint
models for classical planning that rely on more sophisti-
cated constraint structures, clearly improving on their log-
ical counterparts in terms of both stronger constraint propa-
gation and faster runtime.

In contrast to classical planning, HTN planning imposes
additional structural constraints of task hierarchies that must
be satisfied. Those additional constraints increasingly mo-
tivate the use of constraint programming. Unfortunately,
early reports of ongoing work in this direction (Surynek and
Barták 2005) have apparently not been followed through.
Stock et al. (2015) provide the only successful application
of CSPs for solving HTN planning problems, known to us.
They, however, rely on a more complex architecture with
multiple constraint networks used independently of one an-
other, each handling a different form of knowledge (e.g.,
causal, temporal, spatial), called meta-CSP (Mansouri and
Pecora 2016).

Instead, in this paper, we outline first ideas for encoding
HTN planning as one single CSP. Our motivation lies in ob-
taining constraint networks for HTN planning that we can
solve with state-of-the-art off-the-shelf solvers, and not re-
lying on tailored solution to this problem.

Preliminaries
We start by briefly presenting some frameworks that are rel-
evant to our work and we will be referring to in this paper.

Qualitative Constraint Satisfaction Problems
In the following, we focus on qualitative constraint satisfac-
tion problems (QCSPs), which are typically used to repre-
sent and reason about qualitative temporal (or spatial) in-
formation. They are defined analogously to classical CSPs
(Russell and Norvig 2020), but allow variables to be of infi-
nite domains. QCSPs are often tackled via the use of a qual-
itative constraint graph, called Qualitative Constraint Net-
work (QCN), which is defined as follows.



Definition 1 (QCN). A QCN is a tuple (V,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables,
each representing an entity of an infinite domain D;

• and C is a mapping C : V ×V → 2B such that C(v, v) =
{Id} for all v ∈ V and C(v, v′) = C(v′, v)−1 for all
v, v′ ∈ V .

Let N = (V,C) be a QCN, then a solution of N is a map-
ping σ : V → D such that ∀v, v′ ∈ V , ∃b ∈ C(v, v′) such
that (σ(v), σ(v′)) ∈ b, and N is satisfiable (or consistent)
iff it admits a solution (Ligozat 2013; Dylla et al. 2017).

We assume our constraint language to be defined like
the well-known Interval Algebra (Allen 1983), which is a
first-order theory for representing and reasoning about tem-
poral information. For now, we make use of its equality
(eq), inequality (neq = {B \ eq}), and ordering constraints
({<,>}).

Hierarchical Task Network Planning
Hierarchical planning extends classical planning by intro-
ducing a task hierarchy. Instead of only using the notion
of applicable actions, it essentially differentiates between
primitive and compound tasks. Primitive tasks are hereby
comparable to the actions in classical planning. Compound
tasks describe a more abstract notion of a set of actions. This
grouping can impose additional restrictions that might not be
easily achievable using only preconditions and effects of ac-
tions. For example, an imposed ordering constraint can be
easily encoded in a compound task and drastically improve
efficiency of the planner. In fact, ordering tasks according to
a partial order can be seen as the motivation behind hierar-
chical task network (HTN) planning, perhaps the most basic
hierarchical formalism (Bercher, Alford, and Höller 2019).
In what follows, we briefly recall the definitions for lifted
HTN planning as recently defined in the hierarchical domain
definition language (HDDL) (Höller et al. 2020).

The basis for HTN planning is the so-called task network,
which essentially imposes a strict partial order on a finite set
of tasks. A set of variable constraints may constrain certain
task parameters to be (non-)equal to other task parameters
or constants, or to (not) be of a certain type. A task network
is called ground if all parameters are bound to constants.

An HTN planning domain D defines the sets of all primi-
tive tasks TP , compound tasks TC , and decomposition meth-
ods M . A method m ∈ M is a triple (c, tn, V C) of a com-
pound task name c ∈ TC , a task network tn ∈ TP ∪ TC and
some variable constraints V C over the parameters of c and
tn. An HTN planning problem P is a tuple (D, sI , tnI , g),
where D is the planning domain, sI ∈ S is the initial state,
tnI is the initial task network, and g optionally defines a goal
description.

Although a goal description can be defined, the objective
in HTN planning is not to achieve a certain state-based goal.
Instead, a solution to a given HTN planning problem is a
final task network tnS which is reachable from sI by only
applying methods and compound tasks. In the process, all
compound tasks need to be decomposed into primitive ac-
tions, such that tnS does not contain compound tasks any-
more. The enforced task hierarchy directly restricts the set

Listing 1: Action drive in HDDL
1 (:action drive
2 :parameters (?l1 ?l2 - location)
3 :precondition (and
4 (tAt ?l1)
5 (road ?l1 ?l2))
6 :effect (and
7 (not (tAt ?l1))
8 (tAt ?l2)))
9 ...)

of possible solutions to only those that can be obtained by
task decomposition (Bercher, Alford, and Höller 2019).

HTN Planning Constraint Model
Similar to Barták and Toropila (2008), we employ a multi-
valued representation of the planning problem. That is, in-
stead of grounding every single fact using enumeration, we
create state variables for different fragments of the world
state, where the domains of values represent exclusive op-
tions. For example, given a service robot, the robot may
only be at one particular location at any given time. In-
stead of now generating all combined facts of a robot be-
ing at a particular location, all potential locations represent
the domain for the state variable of the robots location. Us-
ing such a multi-valued representation instead of a purely
propositional, fact-based encoding, the number of variables
decreases, whereas the size of the domains increases. This is
generally recommended for constraint modeling, as opposed
to the other way around (many variables of small domains)
(Barták and Toropila 2008).

We follow the constraint model proposed by Ghallab,
Nau, and Traverso (2004), coined the straightforward model
by Barták and Toropila (2008). For now, we only consider
HTN features defined by the Hierarchical Domain Defini-
tion Language (HDDL) (Höller et al. 2020).

A CSP denoting the problem of finding a plan of length n,
consists of n+1 incrementally changing constraint networks
N , where the kth network N i

k represents the state sik after
performing k−1 planning operations and i incremental task
decompositions. Since the plan length n, i.e., the sequence
of primitive actions in the final plan, is generally unknown
in advance, we dynamically grow the list of constraint net-
works N whenever we perform a primitive action in state
sik which results in a new successor state sik+1. Describing
states as constraint networks N , is a variation in presentation
from Barták and Toropila (2008), as they describe states as
sets of v multi-valued variables.

In the following, we elaborate on the constraint network
design and point out how the features of HDDL can be ex-
pressed within this notation.

Variable representation: We model the variables in a
special constraint network, which ensures a mapping of each
state variable to exactly one object of the problem domain.
To illustrate this, consider the action drive from the trans-
port domain presented by Höller et al. (2020), given in List-
ing 1. The corresponding problem file further specifies the
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Figure 1: Grounding of location ?l1 as qualitative constraint
network N .

relevant location objects as city-loc-0, city-loc-1, or city-loc-
2. We can formulate a mapping from the location ?l1, given
as parameter, to a particular object specified by the prob-
lem, as a constraint network (Figure 1), where ?l1 is either
equal (eq) or not equal (neq) to any of the objects. By pre-
ferring eq over neq in the search, and ensuring that all ob-
jects are different (i.e., neq), we guarantee a mapping to at
most one of the objects. Indeed, once we commit to any one
of the equality relations, constraint propagation will force
all other relations to become neq, due to the neq constraint
between all of the objects. We can easily extend this formu-
lation with other variables from the same domain (such as
?l2), by adding them as new nodes to the network and cre-
ating the same eq, neq constraints to all of the objects. Note
that all such variables by default are independent in terms of
constraint propagation and thus mapping one variable to an
object does not influence the other variable mappings. Obvi-
ously, we can change this behavior by adding additional con-
straints (such as neq) between variables if desired. Further-
more, note that by default this constraint network approach
postpones all variable mappings without explicit constraints
until eventually the CSP solver is called. For example, imag-
ine that for action drive we could have multiple vehicles
available at ?l1 of which any particular one could be used to
drive to ?l2. If no direct constraints are imposed, initially we
only set the eq, neq constraints which postpone this decision
to the latest point in time.

Action representation: Action application works just like
in classical planning, where for a given state sik action vari-
able Asik acts as a logical constraint, leading from one con-
straint network N i

k to the next N i
k+1. Clearly, all required

preconditions of the action need to be satisfied in N i
k, then

after its execution all effects of the action hold in N i
k+1. We

follow the formulation by Barták and Toropila (2008) and
model this relation using logical implications, i.e. for any
action variable Asik in state sik we have,

Asik = a → Pre(a)s
i
k ,∀a ∈ Dom(Asik),

Asik = a → Eff(a)s
i
k+1 ,∀a ∈ Dom(Asik)

where Pre(a)s
i
k is a conjunction of equalities changing the

required relations within the constraint network to reflect the
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Figure 2: Applying action drive (Listing 1) in state sik
(left) to derive at sik+1 (right).

preconditions of action a in state sik. Similarly, Eff(a)s
i
k+1

expresses the effects of a in the successor state sik+1. Barták
and Toropila (2008) additionally introduce constraints for
the frame axioms, i.e. constraints to ensure that any state
variable unaffected by the action remains unchanged. In our
representation this naturally holds as we consider state sik+1

as a copy of its predecessor sik and only change the variables
affected by the action. A final refinement, e.g., variable bind-
ing ?l1

eq−→ city-loc-0, which is not directly affected by the
action, can later not be changed through constraint propaga-
tion but would only lead to inconsistency.

Note that action a ∈ Dom(Asik) may only be one of many
choices possible in the given state sik. However, the effect of
the action and hence the successor state sik+1 depends on
which action was chosen. To this end, we employ the same
implication structure as outlined above, requiring the con-
straint solver to handle such instances. Figure 2 illustrates
this notion on a simple example of applying action drive.
Formulating this implication directly within the realms of
the constraint language can eliminate the need for extending
the state-of-the-art solvers that we have today for solving
qualitative constraint networks and is part of future work.

Abstract task representation: In HDDL, abstract tasks
are defined explicitly in the domain. They represent a form
of abstraction from the specific method used to fulfill a cer-
tain task, already defining the parameters and their respec-
tive input types. We can use this information to establish the
same eq, neq constraints to all variables of the domain in-
dicated by the type. We hereby convey the information that
each parameter should be linked to exactly one variable of
its domain, without making this link explicit yet.

Method representation: As described above, methods
are always linked to an abstract task. However, they may
define further parameters beyond the ones already stated in
the abstract task definition.

Generally, methods describe a fixed number of subtasks
that have to be fulfilled in order to complete the task. Some
HTN planning systems, in particular those employing SAT
compilation techniques (e.g., Behnke, Höller, and Biundo
(2018); Schreiber et al. (2019); Schreiber (2021)), rely on
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Figure 3: Applying method m-deliver to decompose task
deliver in state sik (left) to derive at si+1

k (right). For full
method and task descriptions, see Höller et al. (2020).

a totally ordered set of those subtasks. By contrast, HDDL
also supports partially ordered subtasks. Conveying the rel-
ative ordering of subtasks has been described as the main
difficulty for a SAT encoding (Behnke, Höller, and Biundo
2019a). Where Behnke, Höller, and Biundo (2019a) rely on
a preprocessing step, conducting reasoning on the order be-
fore creating the actual SAT formula, CSPs naturally allow
the representation of ordering constraints.

Where an action progresses the state one step from k to
k + 1 within a single layer of the decomposition tree, a task
decomposition introduces an incremental change along the
hierarchy of the decomposition tree, moving from layer i to
i+ 1. Given a task variable T sik in state sik, we then have,

T sik = m → Dec(m)s
i+1
k ,∀m ∈ Dom(T sik)

where Dec(m) is the decomposition effect of the method
m, adding all subtasks to the constraint network N i+1

k . Any
ordering relation between those subtasks can simply be es-
tablished by introducing ordering constraints in the network.

Similarly to the incremental SAT encoding by Schreiber
et al. (2019), we must ensure that for finding a plan of
length n, the final increment of all constraint networks does
not contain any task or method variables.

Discussion and Related Work
Mali and Kambhampati (1998) were the first to propose a
propositional logic encoding for HTN planning problems.
However, these encodings were restricted to non-recursive
domains. Only in recent years, development of new SAT en-
codings overcame this restriction and resulted in competitive
performance. Initially, these encodings were only applica-
ble to the subset of totally-ordered HTN planning problems
(Behnke, Höller, and Biundo 2018; Schreiber et al. 2019).
By now, SAT encodings have been extended to partially-
ordered problems and used to find optimal plans with respect
to the plan length (Behnke, Höller, and Biundo 2019a,b).

As also summarized by Schreiber (2021), all these SAT
encodings operate similarly. Their encodings are iteratively
extended along the depth of the hierarchy, instead of the
length of a final plan (as done in classical planning). Addi-
tionally, they all require a prior grounding procedure. While
it has been shown that grounding often improves subsequent
search algorithms, on some planning domains, grounding

suffers from intrinsic scaling problems. Thus, Schreiber
(2021) developed a lifted SAT planner that omits grounding,
but instead is limited to totally-ordered problems.

A CSP encoding, as discussed in this paper, by design
avoids the need for grounding. Furthermore, additional con-
straints can essentially be modeled for free, which make this
approach quite comfortable in dealing with partially-ordered
HTN planning problems.

The advantages of a CSP encoding have previously been
explored by Stock et al. (2015). But in contrast to our work,
they rely on a sophisticated reasoning framework, called
meta-CSP (Mansouri and Pecora 2016), as underlying ar-
chitecture. This framework has the advantage that it allows
reasoning with knowledge of different forms (such as tem-
poral, spatial, causal, resources). It comes, however, with the
drawback that finding consistent solutions is generally slow,
since each form of knowledge is dealt with in a separate
constraint network and finding a consistent solution requires
all networks to be consistent at once. This requires special
solvers that allow interaction among each other. Instead, we
are motivated to find an encoding which uses only one sin-
gle constraint network architecture, such that we can employ
state-of-the-art solvers that we have today for solving quali-
tative constraint networks. This may be seen as an approach
in between a pure propositional logic encoding on one side
and a quite complex constraint-based encoding on the other
side. We argue that this allows us to combine the advantages
of both worlds.

For now, a few challenges remain that may impact the suc-
cess of the proposed CSP encoding. First, we assume that
dynamically creating new constraint networks both within
one hierarchy for primitive action application and following
the hierarchy for compound task decomposition is feasible
without computational blow-up. We here expect that state-
of-the-art qualitative constraint solvers can help to drasti-
cally reduce the state space as inconsistent configurations
can be pruned early, as done traditionally in CSP search.
Second, action variables are mapped to their respective do-
main indicated by the variable type. We currently do not
consider the case where the type of a variable may change
or is unavailable. Without type information a mapping to all
ground objects can be done, albeit inefficiently. While a vari-
able is not yet ground, changing its type is simple, as this just
changes the possible mappings and consequently disallows
all others (by use of neq constraints).

Conclusion and Future Work
In this paper, we have outlined first steps towards construct-
ing a constraint satisfaction problem (CSP) encoding for
HTN planning problems. CSPs have been used in classical
planning before and allow for a more natural representation
compared to an encoding in propositional logic (Nareyek
et al. 2005). Using such SAT encodings has recently led
to very successful results in HTN planning. Especially the
constraints imposed by the task hierarchy present in HTN
planning problems motivate the use of more sophisticated
constraint satisfaction techniques. To our surprise, only lit-
tle work has been conducted in this direction. In fact, Stock



et al. (2015) provide the only approach we are aware of, us-
ing CSPs in the context of HTN planning. Their approach is
based on modeling the planning problem in a more complex
reasoning framework, called meta-CSP (Mansouri and Pec-
ora 2016), which allows them to represent different forms of
information in separate CSPs independently.

We avoid the overhead of combining multiple CSPs by
aiming to encode the HTN planning problem directly into
one single qualitative constraint network architecture. Our
encoding draws inspiration from recent SAT encodings for
expressing the task hierarchy in an incremental fashion and
restricting the depth of the decomposition tree instead of
the length of the plan (Schreiber 2021). Action encodings
follow the structure proposed previously for classical plan-
ning (Barták and Toropila 2008), using an implication con-
straint. We additionally introduce a novel binding mecha-
nism, based on preferring equality-relations over all others.
State-of-the-art solvers that we have today for solving qual-
itative constraint networks can be extended to handle those
implication constraints and follow the required preference
when solving the constraint problems.

Future work will be further refining our encoding, such
that state-of-the-art solvers can be applied directly without
the need of adaptations. We believe that the Interval Algebra
(Allen 1983) already allows us to model several challenges
of encoding HTN planning as CSP, as the relations defined
within this qualitative constraint language, such as during or
meets, intuitively describe properties present in HTN plan-
ning. Finally, we are interested in actually implementing our
encoding, verifying its correctness and comparing its perfor-
mance with current state-of-the-art HTN planners.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful feedback. This research is partially supported by
BMBF AI lab dependable intelligent systems.

References
Allen, J. F. 1983. Maintaining Knowledge about Temporal
Intervals. Commun. ACM, 26(11): 832–843.
Barták, R.; and Toropila, D. 2008. Reformulating Con-
straint Models for Classical Planning. In Proceedings of
the Twenty-First International Florida Artificial Intelligence
Research Society Conference, 525–530. AAAI Press.
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