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Abstract

Machine learning algorithms, despite their increas-
ing success in handling object recognition tasks,
still seldom perform without error. Often the pro-
cess of understanding why the algorithm has failed
is the task of the human who, using domain knowl-
edge and contextual information, can discover sys-
tematic shortcomings in either the data or the algo-
rithm. This paper presents an approach where the
process of reasoning about errors emerging from
a machine learning framework is automated using
symbolic techniques. By utilizing spatial and geo-
metrical reasoning between objects in a scene, the
system is able to describe misclassified regions in
relation to its context. The system is demonstrated
in the remote sensing domain where objects and en-
tities are detected in satellite images.

1 Introduction
Many machine learning algorithms are trained by optimiz-
ing a cost function that continuously measures the training
errors during learning, and adapts the model parameters in
order to minimize these errors. With this approach, the learn-
ing algorithms seem to learn from their errors. However, such
learning processes differ from what human advisors usually
mean by “learn-from-your-mistakes”, which entails that the
learner is able to understand why the errors occurred and
conceptualize them by expressing their characteristics. The
training process of minimizing a cost function is not aimed
towards explaining the errors or describing why such errors
have been made, but instead follows the defined rules for pa-
rameter updates given by the selected minimization optimiza-
tion method.

For satellite image classification, a classifier that only uses
the RGB channels as input runs the risk of producing a large
amount of misclassifications (errors) due to the visual sim-
ilarity between certain classes. For example, the class wa-
ter looks similar to shadows, and buildings with gray roofs
will look similar to roads in the RGB channels. One so-
lution to this problem, that has been addressed in previous
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works, is to use additional sources of information as in-
put to the classifier, such as Synthetic-aperture radar (SAR),
Light detection and ranging, (LIDAR), or Digital Elevation
Model (DSM) for the height information, and/or hyperspec-
tral bands, near-infrared (NIR) bands, and synthetic spectral
bands for texture and color information [Ma et al., 2017;
Cheng et al., 2017]. However, these works are imprac-
tical for satellite images that only contain RGB channels,
such as Google Maps. Another possible solution to increase
the performance is to change the architecture of the clas-
sifier in order to increase the capacity, e.g., by using deep
Convolutional Neural Networks (DCNNs) [Ball et al., 2017;
Zhang et al., 2017; Guirado et al., 2017].

In this paper, instead of adding additional sources of infor-
mation or experimenting with the architecture of the classi-
fier, we aim to spatially explain the errors in terms of their
structure and neighborhood. To this end, we propose a repre-
sentation of the context that includes symbolic concepts and
their relations, in order to reason upon and retrieve the re-
quired characteristics of the data.

Integration of data-driven learning methods with symbolic
reasoning has been identified in the literature as one of the
key challenges in Artificial Intelligence [Garcez et al., 2015].
Depending on the approaches to represent both low and high
level data, such integration has been addressed under differ-
ent names that include abduction-induction in learning [Ray-
mond, 2000], structural alignment [Alirezaie and Loutfi,
2012], and neural-symbolic methods [Besold et al., 2017;
Bader and Hitzler, 2005]. With the increasing interest in con-
nectionist learning systems, and in particular in deep learn-
ing methods, research on integrated neural-symbolic sys-
tems has recently made considerable progress. Such integra-
tions are routinely referred to as explainable Artificial Intel-
ligence (XAI), and used to provide better insights into the
learning process [Doran et al., 2017].

1.1 Related Work
As discussed in [Xie et al., 2017], in neural-symbolic sys-
tems where the learning is based on a connectionist learning
system, one way of interpreting the learning process is to ex-
plain the classification outputs using the concepts related to
the classifier’s decision. The work presented in [Hendricks
et al., 2016] introduces a learning system based on a convo-
lutional network LRCN [Donahue et al., 2017] that provides
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explanations over the decisions of the classifier. An explana-
tion is in the form of a justification text. In order to generate
the text, the authors have proposed a loss function upon sam-
pled concepts that, by enforcing global sentence constraints,
helps the system to construct sentences based on discriminat-
ing features of the objects found in the scene. However, in
this work, no specific symbolic representation was provided,
and the features related to the objects are taken from the sen-
tences already available for each image in the dataset (CUB
dataset [Wah et al., 2011]).

With focus on the knowledge model, the work presented
in [Sarker et al., 2017] proposes a system that explains the
classifier’s outputs based on the background knowledge. The
key tool of the system, called DL-Learner, works in parallel
with the classifier and accepts the same data as input. Us-
ing the Suggested Upper Merged Ontology (SUMO)1 as the
symbolic knowledge model, the DL-Learner is also able to
categorize the images by reasoning upon the objects together
with the concepts defined in the ontology. The compatibility
between the output of the DL-Learner and the classifier can
be seen as a reliability support and at the same time as an
interpretation of the classification process.

Likewise, the work detailed in [Icarte et al., 2017] relies on
a general-purpose knowledge model, namely, the Concept-
Net Ontology. In this work, the integration of the symbolic
model and a sentence-based image retrieval process based on
deep learning is used to improve the performance of the learn-
ing process. For this, the knowledge about different concepts
(e.g., their affordances, their relations with other objects) is
aligned with objects derived from the deep learning method.

Although in the aforementioned works, the role of the sym-
bolic knowledge represented by ontologies in regard to im-
proving or interpreting the learning process has been empha-
sized, they are limited in terms of the symbolic representation
models. More specifically, the concepts and their relations in
ontologies are simplified, limiting the richness of delibera-
tion in an eventual reasoning process, especially for visual
imagery data.

1.2 Contribution
In this work, we propose an ontology-based reasoning ap-
proach to assist a neural network classifier for a semantic
segmentation task. This assistance can be used in particular
to represent typical errors and provide possible explanations
which can later be used in correcting misclassification. Our
work differentiates from the previous neural-symbol systems
in two regards. Firstly, our method is able to find the most
likely misclassified data (which can be rephrased as errors
realization). Secondly, our model focuses on the misclassi-
fications and uses ontological knowledge (with concepts and
their spatial relations) together with a geometrical processing
to explain them.

The rest of the paper is structured as follows: In Section 2
we present the steps of our approach. Section 3 provides the
technical details on the classification process. The symbolic
module including the ontological knowledge model and the
reasoning process is explained in Section 4. Our experimental

1http://www.adampease.org/OP/

evaluations are presented in Section 5, which is followed by
a brief discussion on the future work in Section 6.

2 Approach
Figure 1 illustrates our approach of using background (on-
tological) knowledge to explain the errors from a classifier
trained on satellite image data. The process is composed of
several steps including: (1) error realization, (2) error charac-
terization using geometrical/spatial reasoning, (3) error gen-
eralization based on the frequency, and (4) error explana-
tion by aligning its features with the ontological knowledge
(ontological reasoning). The inferred explanation can pos-
sibly contribute in the process of error correction (shown as
dashed-line) and update the classification results.

Misclassified Areas (    )

Classified Regions

Satellite Imagery Data

Backgrond
Knowledge
(OntoCity)

1 Error Realization

CAE-based Classifier

Spatial Reasoner

2 Error Characterization

3 Error Generalization

4 Error Explanation

Ontological Reasoner

5 Error Correction

Classification Update

Figure 1: The process of explaining a misclassification in 4 steps:
(1) error realization, (2) error characterization, (3) error generaliza-
tion, and (4) error explanation. This process will contribute in error
correction shown in dashed line.

Error realization refers to the process indicating likely
misclassified areas (errors) on the map (to be detailed
in Section 3). Given theses misclassified areas, a spa-
tial/geometrical processing method characterizes such areas
in terms of their structure and also identifies spatial relations
within their vicinity. An ontological reasoning process is sub-
sequently applied upon both the retrieved characterization of
the errors and domain knowledge about generic spatial con-
straints in outdoor environments. After generalizing the rela-
tions retrieved by the reasoner based on their frequency, their
semantics may justify the errors made by the classifier. Algo-
rithm 1 provides further details of the explanation process.

Algorithm 1 Explaining Misclassification
Require: S = empty,m,R
1: . S: A hash-map, empty in the beginning
2: . m: The given misclassification matrix
3: . R: The given list of classified regions
4: G  extractGeometries(m)
5: for each r 2 R do
6: t getRegionType(r)
7: for each g 2 G do
8: q  calculateRCC(g, r)
9: S(q, t) < q, t >
10: end for
11: end for
12: < Q, T > getMostSeenPair(S)
13: C  queryOntology(Q, T )
14: Explanation getRegionType(C)

The data used in this work consists of a RGB satellite im-
age of central Stockholm, Sweden, with size 4000 ⇥ 8000
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pixels and a pixel-resolution of 0.5 meters. The data was di-
vided into patches of 500⇥ 500 pixels and divided into train
and test sets by a 50 � 50 split so that both sets contained a
similar class distribution. The ground truth used in the classi-
fication process has been provided by the Swedish Mapping,
Cadastral and Land Registration Authority (Lantmäteriet).

3 Object Detection and Classification
A Convolutional Auto-encoder (CAE) [Masci et al., 2011] is
used to classify every pixel in each sub-image of size 500 ⇥
500 pixels into one of 5 categories, namely, vegetation, road,
building, water, and railroad. One layer of a CAE consists of
an encoder and a decoder, see Figure 2.

RGB input, 𝐼 𝑥 

Encoder Decoder 

Convolutional layer Pooling layer de-pooling de-convolution 

𝑊𝑖𝑘 𝑝 𝑝 𝑊𝑜𝑘 

Figure 2: Overview of a one layer of Convolutional Autoencoder
(CAE) that consists of an encoder and a decoder. The input is a
RGB image and the output is the semantic segmentation.

The k-th feature map in the convolutional layer is calcu-
lated as:

h
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where Ii is the input image with color channel i, W k
ik is the k-

th filter from input channel i and filter k, bk is the bias for the
k-th filter that is applied to the whole map, �1 is a non-linear
activation function, and ⇤ denotes the convolution operation.
In this work, we used the Rectified Linear Unit (ReLu) [Nair
and Hinton, 2010] as the activation function. For an input
image of size m⇥m⇥c and a filter matrix of size n⇥n⇥c⇥k,
the convolutional layer is of size (m�n+1)⇥(m�n+1)⇥k.

The pooling layer is obtained by downsampling the con-
volutional layer by taking the maximum value in each p ⇥ p

non-overlapping subregion. The size of the pooling layer is
(m� n+ 1)/p⇥ (m� n+ 1)/p⇥ k.

The unpooling is performed with switch variables [Zeiler et
al., 2011] that remember the position of the maximum value
during the pooling operation.

Finally, a deconvolutional operation is performed to obtain
the final output, x. For a typical convolutional autoencoder,
the output has the same dimensions as the input image, I .
However, for our application we want to perform a classifica-
tion of the input image. Therefore, the output image x has the
dimensions m ⇥ m ⇥ K where K is the number of classes.
The K-th output layer denotes the probability of each pixel
belonging to class K. The output layer is calculated as:

x = �2
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o
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K
�

(2)

where o

k is the k-th map of the unpooling layer, W k
ok is the

k-th filter from unpooling layer o and filter k, cK is the bias
for the K-th output layer, and �2 is the softmax non-linear
activation function.

Figure 3 shows an overview of the method that is used to
identify regions that have a high probability to be misclassi-
fied (i.e., the method to realize errors). The system consists of
two Convolutional Auto-encoders (CAE) (noted CAE 1 and
CAE 2 in Figure 3).

The first model, CAE 1, is trained to perform the image-
to-image translation from the RGB input to the classified im-
age x. CAE 1 is trained with supervised learning using the
ground-truth y, see Section 3.

The second model, CAE 2, is trained unsupervised to re-
construct the input ground-truth y into the reconstruction of
the ground-truth ŷ. The purpose of the model CAE 2 is to
learn the overall structure and relation between classes.

The predicted label image x is then used as input to CAE 2
to get a reconstruction of the label image x̂. The main idea is
that regions that have a high reconstruction error, (x � x̂)2,
have a higher probability to be misclassified and should be
further analyzed by the reasoner in order to explain a possi-
ble cause for the misclassification and give a suggestion for a
more likely classification.
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Figure 3: Overview of the method for indicating suspected misclas-
sified regions. The input to the classifier (CAE 1) is an RGB image
and produces the semantic segmentation, x. The label reconstructor
(CAE 2) is first trained to reconstruct the groundtruth, y, into the
reconstruction ŷ. The classified output x is then reconstructed us-
ing the label reconstructor to get the reconstructed classifications x̂.
The reconstruction error between x and x̂ is then used to indicate the
misclassified regions. Red arrows indicate the data processing dur-
ing training and black arrows indicate the process during inference.

One important aspect of our method is the architecture for
the label reconstructor in order to identify misclassified re-
gions. On one hand, a single-layered CAE with a small fil-
ter size could easily reconstruct any configuration of the pre-
dicted map by simply reconstructing the local input pixel-by-
pixel. Instead of increasing the filter size, we use a deep net-
work with 5 layers. Due to the subsampling in each layer,
this leads to the lower layers learn to reconstruct the local in-
put and the higher layers learn the relation between areas with
a larger perceptive field.

The classifier (CAE 1) and the label reconstructor (CAE
2) are constructed with the same architecture and consist of
a 5-layer CAE. The filter size for each layer is [11, 9, 7, 5, 3]
and the number of filters in each layer is [10, 20, 30, 40, 50].
The pooling dimension is set to 2 in each layer and uses max-
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pooling. The activation function in each layer is the ReLu-
activation function except for last layer that uses a softmax ac-
tivation function. The parameters were initialized with Xavier
initialization [Glorot and Bengio, 2010] and trained using the
AdaGrad [Duchi et al., 2011] optimization method until con-
vergence, which took around 50 hours on a GTX 1060 GPU.

4 Reasoning on misclassifications
The misclassification explanation process relies on geomet-
rical and ontological reasoning. Before outlining the details
of the explanation process, we first briefly introduce OntoC-
ity which contains the background knowledge model used in
this work.

4.1 OntoCity

OntoCity2 is an extension of the GeoSPARQL3 ontology that
serves as a standard vocabulary for geospatial data by en-
abling qualitative spatial reasoning upon this type of data.
OntoCity, whose representational details can also be found
in [Alirezaie et al., 2017], has been designed to repre-
sent cities in terms of different aspects including the struc-
tural details, conceptual and physical objects, their types
(e.g., natural or man-made), and their relations (e.g., spa-
tial constraints, affordances). The main concept in On-
toCity is oc:CityFeature, which is the subclass of the class
geos:Feature

4 and defines any spatial object with a geometry
in the physical world. According to the following axiom5, a
city feature is (or more specifically is a subclass of) a feature
whose geometry is in the form of a polygon and has at least
one spatial relation with another city feature:

oc:CityFeature v geos:Feature u
9 geos:hasGeomtery.geos:Polygon u
9 oc:hasSpatialRelation.oc:CityFeature

By spatial relation we refer to the 8 relations in RCC-8
(Region Connection Calculus) [Cohn et al., 1997] that are
also defined in GeoSPARQL, and are used to specialize the
definition of features in a city. In OntoCity there are different
types of features defined as subclasses of the oc:CityFeature

class. For instance, a feature might be with a fixed geom-
etry (oc:FixedGeometryFeature) or a dynamic one whose ge-
ometry changes in time (oc:DynamicGeometryFeature). Like-
wise, a feature can be physical (oc:PhysicalFeature, e.g.,
a landmark with absolute elevation value measured from
the sea floor), conceptual (oc:ConceptualFeature, e.g., a
rectangular division in a city regardless of their land-
marks), mobile (oc:MobileFeature, e.g., a car), or stationary
(oc:StationaryFeature, e.g., a building). The following ax-
ioms show some subsumption relations with oc:CityFeature:

2https://w3id.org/ontocity/ontocity.owl
3http://www.opengeospatial.org/standards/geosparql
4The prefixes oc and geos refer to the URIs of OntoCity and

GeoSPARQL, respectively.
5The axioms are in description logic (DL) [Baader and Nutt,

2003].

oc:DynamicGeometryFeature v oc:CityFeature

oc:FixedGeometryFeature v oc:CityFeature

oc:MobileFeature v oc:CityFeature

oc:StationaryFeature v oc:CityFeature

oc:ConceptualFeature v oc:CityFeature

oc:PhysicalFeature v oc:CityFeature u
9 oc:hasAbsoluteElevationValue.xsd:double

Each of the aforementioned subclasses of the class
oc:CityFeature has its own taxonomy. Due to the lack of
space, we only mention a limited number of these axioms.
For instance, oc:Region as a physical feature with a fixed ge-
ometry which is also stationary (i.e., non-mobile) represents
a landmark that can per se be categorized into various types
such as flat or non-flat regions, or likewise, into man-made or
natural ones:

oc:Region v oc:PhysicalFeature u oc:StationaryFeature u
oc:FixedGeometryFeature

oc:ManmadeRegion v oc:Region

oc:NaturalRegion v oc:Region

oc:FlatRegion v oc:Region

oc:NonFlatRegion v oc:Region u
9 oc:hasRelativeElevationValue.xsd:double u
9 oc:intersects.oc:Shadow

A non-flat region in OntoCity refers to those landmarks
with a relative elevation value, where by relative we mean
the height measured from the ground level (in their neighbor-
hood) and not from the absolute sea-level. Due to its height,
a non-flat region is also assumed to cast shadows (defined as
the class oc:Shadow in OntoCity) with which it has a spatial
relation oc:intersects that subsumes several RCC-8 relations
including partially overlapping (geos:rcc8po) and externally
connected (geos:rcc8ec).

The subclasses of the class oc:Region can also specify the
texture (i.e., type) of the landmark categorized as follows. in
the following. It is worth mentioning that some of these re-
gion types are used as labels by the classifier to classify re-
gions:

oc:River v oc:WaterArea v oc:Region

oc:Road v oc:PavedArea v oc:ManmadeRegion

oc:Park v oc:VegetationArea v oc:Region

oc:Building v oc:ManmadeRegion u oc:NonFlatRegion

The RCC-8 relations are used in OntoCity to describe more
specific features (e.g., bridges, shadows, shores) whose spa-
tial relations with their vicinity are important in their defini-
tions. For instance, a bridge is defined as a man-made region
which is not flat (i.e, has elevation) and is partially overlap-
ping (referring to the RCC-8 relation geos:rcc8po) at least an-
other region (e.g., a water area, a street):

oc:Bridge v oc:ManmadeRegion u oc:NonFlatRegion u
9 geos:rcc8po.oc:Region

The concept shadow as a spatial feature with a geometry
is also defined in OntoCity. Although the shape of shadows
depends on the exact position of the source light and also the
height value of the casting objects, it is still possible to qual-
itatively describe shadows in the ontology. In OntoCity, a
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shadow is seen as a conceptual (non-physical) feature whose
geometry is dynamic and mobile (i.e., changing depending
on the time of the day). The definition of the concept shadow
becomes more precise by adding the spatial constrains saying
that a shadow is also intersecting (oc:intersects) with at least
one non-flat region (likely as its casting object):

oc:Shadow v oc:ConceptualFeature u
oc:DynamicGeometryFeature u oc:MobileFeature u
9 oc:intersects.oc:NonFlatRegion

The aforementioned axioms were a sub set of the gen-
eral knowledge represented in OntoCity. However, the back-
ground knowledge can be much more specific and indicate
unique features of a specific environment (e.g., “in the given
region there is no building connected to water areas”).

4.2 Explaining the misclassifications
The process of explaining the misclassifications is composed
of several steps as shown in Algorithm 1. The algorithm ac-
cepts as input the list of the classified regions R as well as the
misclassifications represented in the form of a pixel matrix
m (as the reconstruction error between x and x̂ explained in
Section 3). In order to (spatially) characterize the errors, first
the boundaries of the misclassified areas formed by misclas-
sified pixels need to be extracted (see line 4 in the algorithm).
Given the geometry of both the misclassified areas (G) and
the classified regions (R) in the form of polygons, the algo-
rithm calculates all the possible (RCC-8) qualitative spatial
relations between any pairs of (g, r) where g 2 G is a mis-
classified area and r 2 R is a classified region in its vicinity.
For each pair (g, r), besides the calculated spatial relation q,
the algorithm also keeps the type of the region r shown as t.
This information for each pair is added to the list S, which at
the end of the geometrical calculation process will contain all
the spatial relations that exist between the misclassified areas
for each specific region type (see lines 5-11). The information
provided in S can be also seen as the geometrical characteris-
tics of the misclassified areas (i.e., error characterization).

As the next step, to find a general description indicating
why the classifier has been confused, the characteristics of
the errors are generalized based on their frequency. Let the
pair < Q,T > (see line 12) be the most observed spatial
relation Q between the misclassified areas and a specific re-
gion type T, and let us view it as a representative feature of
the misclassified areas. By applying an ontological reasoner
upon OntoCity, we can query the ontology and ask for all
the spatial features that are at least in one Q relation with
type T, where the DL syntax of the query is: 9 T.Q. By ap-
plying the ontological reasoner the query can also be further
generalized from the type T to its super-classes in OntoC-
ity (see line 13). The concept (C) as a spatial feature (C v
oc:CityFeature), which is inferred by the reasoner, is
considered as an explanation.

5 Empirical Evaluation
The classifier was trained on the training set and applied upon
the test data and resulted in ⇡ 32K segments (or regions).
Figure 4, left column, shows a 500 ⇥ 500 pixel large subset

of the test data together with the segmentation. Each seg-
ment is classified into vegetation, road, building, water, or
railroad (middle column). The reconstruction error (right col-
umn) identifies the probability that the segment is misclassi-
fied, in particular, the darker the segment the less likely it is
to be misclassified (i.e., error realization).

Vegetation Road Building Water Railroad

Figure 4: Left: Input RGB image together with the segmentation.
Middle: Classified segmentation from the classifier. Right: Average
reconstruction error for each segment where bright areas indicate
suspected classification errors.

Figure 5: A high level representation of an example error expla-
nation process. The misclassified area (in red) is externally con-
nected (geos:rcc8ec) to the building region (in blue). By map-
ping the 3 aforementioned entities into their equivalent concepts in
the ontology, the ontological reasoner infers the direct superclass
(i.e., oc:shadow) of the misclassified area whose constraints are
more general (9 oc:intersects.oc:NonFlatRegion) than
the spatial representation of the red misclassified area.

Given the segments and the sorted list of reconstruction
errors, the spatial reasoner together with the ontological rea-
soner are in charge of error explanation. The high level repre-
sentation of the symbolic process is illustrated in Figure 5. In
the following we go through the details of each step requited
to achieve the final explanations for the errors. The error
characterization process as the first step considers the top 100
misclassified regions to extract their boundaries and their spa-
tial relations with their segmented neighborhood. This step
has been implemented using the open-source JTS Topology
Suite6. Table 1 shows a summary of the error characteriza-
tion process. To find a representative feature of the misclas-
sified areas (i.e., error generalization), Algorithm 1 takes into
account the pair < Q, T > as the most observed spatial rela-
tion Q between the misclassified areas and a specific region
type T, which in our case, as shown in Table 1, is the pair
< Q= geos:rcc8ec, T= oc:Building> which involves 89 mis-
classified areas.

The pair < Q,T > is enough to query the ontological
concepts with spatial constraints. We have extended and
used the reasoner Pellet, as an open-source Java based

6https://github.com/locationtech/jts
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``````````Type (t)
Relation (q)

ec po

oc:Building 89 5
oc:Road 41 0
oc:Water 19 1

Table 1: A summary on the error characterization process: Each
cell value represents the number of misclassified regions involved in
the given spatial relations (q) with the given region type (t), where
ec and po refer to the RCC-8 relation externally connected and
partially overlapping, respectively.

OWL 2 ontological reasoner [Sirin et al., 2007]. The
extension is in terms of filtering concepts based on their
spatial constraints. The DL syntax of the query given to the
reasoner is 9 geos:rcc8ec.oc:Building interpreted as “all the
things that are at least in one geos:rcc8ec relation with the
region type oc:Building”. The ontological reasoner results
in a hierarchically linked concepts in the ontology from the
most generalized to the most specialized (direct superclass)
concepts satisfying the constraint given in the query. As
shown in Table 2, the satisfactory concept is explained as
“a mobile conceptual feature with a dynamic geometry”
or more specifically a oc:shadow (as a direct answer of the
query). In OntoCity, the concept shadow is defined based on
the spatial constraint: 9 oc:intersects.oc:NonFlatRegion,
which is found by the reasoner as the direct gen-
eralization of the query 9 geos:rcc8ec.oc:Building

(where, geos:rcc8ec v oc:intersects and
oc:Building v oc:NonFlatRegion) (see Figure 5).

Inferred concepts by the reasoner description
oc:CityFeature indirect superclass
oc:ConceptualFeature indirect superclass
oc:DynamicGeometryFeature indirect superclass
oc:MobileFeature indirect superclass
oc:Shadow direct superclass

Table 2: Error explanation as the output of the ontological reasoner.

Figure 6 shows two samples taken from the classification
output, with some marked misclassified areas. At the first
row, the areas marked with number 1 and 2 are misclassi-
fied as water. As the RGB image on the left illustrates, the
marked areas are connected to buildings which cast shadows.
Knowing that an area is under shadow, we can explain that the
classifier is confused due to the similarity between the color
of the shadow and the color of water (both looked dark). At
the second row, the area marked with number 1 is likewise
misclassified as water. This area is again (externally) con-
nected with a building whose shadow can explain the mis-
classification. This area is furthermore located between (i.e.,
connected with) at least two disconnected regions labeled as
roads which are disconnected at the shadow area. It can ex-
plain the second most observed relation listed in Table 2, be-
tween the misclassified areas and the region type oc:Road. As-
suming buildings are often located close to roads (or streets),
their shadow are likely casted on some parts of the roads.
Therefore, a road instead of being recognized as a single road,
is segmented into several roads disconnected at the shadow

areas due to the change in their colors. Errors caused by shad-
ows are not always labeled as water. Again in the second row,
the areas marked with number 2 and 3 are also connected to
buildings and roads, however, misclassified as railroads again
due to the fact that the darkness of the shadow at this location
is similar to the captured color of railroads in the image data.

Vegetation Road Building Water Railroad

1

2

1

2

3

Figure 6: Two examples of the classification output along with their
input RGB image, classified segmentation and the average recon-
struction error. The misclassified areas marked with numbers are
in spatial relations with buildings, roads, vegetation, etc. The on-
tological reasoner explains the misclassification as the result of the
shadow of buildings on their neighborhood.

6 Discussion & Future Work

In this paper, we have proposed an ontology-based reason-
ing approach that automates the process of making sense of
the misclassifications. The symbolic module (i.e., the spatial
and ontological reasoning) used in this approach can act as a
referee who explains why something has been misclassified.
This explanation is made based on the geometrical features
of the data which are not used by the classifier that only relies
on the RGB channels of satellite image data.

Given the explanation about the errors, we ideally would
like the symbolic module to also provide a correction of the
misclassifications (see Figure 1). For this, there are a num-
ber of issues that have not been addressed in this work. The
correction process depends on the inferred concept from the
ontology. For example, if the concept as the explanation
refers to a specific region type (i.e, a physical concept such as
oc:Bridge) we could relabel the misclassified pixels with
the region type. However, as we have shown, it can be a con-
ceptual feature for which finding a relevant label to relabel
the misclassified pixels might need further processing. If the
reasoner infers that the misclassified area is under shadow, for
example, the new label for this area is assumed to be the same
as the type of the regions surrounding (referring to the RCC-
8 relation tangential proper part: geos:rcc8tpp) the area
under shadow. As the next step, we will focus on the correc-
tion process and deal with the aforementioned issues.
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