
A Decomposition Framework for Inconsistency Handling
in Qualitative Spatial and Temporal Reasoning

Yakoub Salhi1 , Michael Sioutis2
1CRIL UMR 8188, Université d’Artois & CNRS, France

2LIRMM UMR 5506, Université de Montpellier & CNRS, France
salhi@cril.fr, msioutis@lirmm.fr

Abstract

Decomposition can be a fundamental process for dealing with
inconsistency in different domains. Among other things, it
allows us to capture potential contexts, identify conflicting
factors, restore consistency, and measure inconsistency. The
aim of this paper is to explore the process of decomposition
in qualitative spatial and temporal reasoning. We first study
a problem that consists in decomposing the original incon-
sistent constraint network into the fewest possible consistent
subnetworks (components) that share a given part. After es-
tablishing several interesting theoretical properties, such as
providing bounds on the number of components in a decom-
position, as well as computational complexity results, we pro-
pose two methods for solving this problem. The first method
is based on a SAT encoding, while the second one corre-
sponds to a greedy constraint-based algorithm, a variant of
which involves the use of spanning trees to reduce the number
of oracle calls. Secondly, we consider a version of the previ-
ous decomposition problem by focusing on maximizing the
similarity between the decomposition components; the simi-
larity in this context is represented by the common constraints
among components. We then adapt our methods to solve this
new problem. Thirdly, we propose two inconsistency mea-
sures that are based on our decomposition framework and
show that they satisfy several desired properties. Finally, we
provide implementations of our decomposition methods and
perform an experimental evaluation.

1 Introduction
Dealing with inconsistency is a central problem in knowl-
edge representation and reasoning. This stems from the
fact that inconsistency can arise for many reasons in real-
world applications, such as context dependency, multi-
source information, vagueness, noisy data, etc. Among
the approaches that are involved in inconsistency handling,
we can mention argumentation, non-monotonic reasoning,
paraconsistency, belief revision, and inconsistency mea-
surement (e.g., see (Brewka, Dix, and Konolige 1997;
Besnard and Hunter 2008; Hunter and Konieczny 2010;
Tanaka et al. 2013; Thimm 2016)).

In this work, we are interested in dealing with
inconsistency in Qualitative Spatio-Temporal Reason-
ing (QSTR) (Ligozat 2013). QSTR is an AI framework that
aims to mimic, natural, human-like representation and rea-
soning regarding space and time. This framework is applied

Task A Task C

Task B

follows

precedes precedes

(a) An inconsistent plan.

Task A Task C

Task B

follows

precedes follows

(b) 1st consistent plan.

Task A Task C

Task B

precedes

precedes precedes

(c) 2nd consistent plan.

Figure 1: A decomposition of an inconsistent qualitative constraint
network (QCN) into consistent subnetworks (components).

to a variety of domains, such as qualitative case-based rea-
soning and learning (Homem et al. 2020) and visual sense-
making (Suchan, Bhatt, and Varadarajan 2021); see (Sioutis
and Wolter 2021) for a recent survey.

B
fol

low
s C

A
precedes C

Motivation We study the decomposition of an inconsis-
tent constraint network into consistent subnetworks under,
possible, mandatory constraints. To illustrate the interest
of such a decomposition, we provide a simple example de-
scribed in Figure 1. The QCN in the top corresponds to
a description of an inconsistent plan. Further, assume that
the constraint Task A {precedes} Task B is mandatory. To
handle inconsistency, this plan can be transformed into two
consistent plans depicted in Figures 1b and 1c; this can be
used, e.g., to capture the fact that Task C must be performed
twice. More generally, network decomposition can be in-
volved in inconsistency handling in several ways. It can be
used to identify potential contexts that explain the presence
of inconsistent information. It can also be used to restore
consistency through a compromise between the components
of a decomposition (e.g., by using belief merging (Condotta
et al. 2010)). In addition, QCN decomposition can be used
as the basis for defining inconsistency measures.

Contributions The contributions of this work are mani-
fold. First, we propose a theoretical study of a problem

that consists in decomposing a possibly inconsistent QCN
into a bounded number of consistent QCNs that may sat-
isfy a specified part in the original QCN; intuitively, the re-
quired common part corresponds to the constraints that are
considered necessary, if any. To this end, we provide up-
per bounds for the minimum number of components in a
decomposition as well as computational complexity results.
Secondly, we provide two methods for solving our decom-
position problem. The first method corresponds to a greedy
constraint-based algorithm, a variant of which involves the
use of spanning trees; the basic idea of this variant is that
any acyclic constraint graph in QSTR is consistent, and this
can be used as a starting point for building consistent com-
ponents. The second method corresponds to a SAT-based
encoding: every model of this encoding is used to construct
a valid decomposition. Thirdly, we consider a variant of the
initial decomposition problem that focuses on maximizing
the similarity between components; the similarity between
two QCNs is quantified by the number of common non-
universal constraints. The interest in maximizing the sim-
ilarity lies mainly in the fact that it reduces the number of
constraints that allow each component to be distinguished
from the rest. We then adapt our previous methods to max-
imize the similarity. Additionally, we introduce two incon-
sistency measures based on QCN decomposition and show
that they satisfy several desired properties in the literature.
These measures can be seen as counterparts of measures for
propositional knowledge bases introduced in (Thimm 2016;
Ammoura et al. 2017). Finally, we provide implementations
of our methods for computing decompositions and experi-
mentally evaluate them using different metrics.

Organization The rest of the paper is organized as fol-
lows: In Section 2 we introduce some necessary definitions
and notations for the reader; in Section 3 we introduce and
study the problem of decomposing an inconsistent constraint
network into consistent components, as well as certain opti-
mization versions of this problem; in Section 4 we present
diverse approaches (constraint- and SAT-based) for obtain-
ing consistent decompositions; in Section 5 we introduce in-
consistency measures in QSTR based on the proposed de-
composition framework; in Section 6 we perform an exper-
imental evaluation of our methods with constraint networks
of well-known calculi in QSTR; finally, in Section 7 we con-
clude and provide some directions for future work.

2 Preliminary Definitions and Notations
In this section, we provide some necessary definitions and
notations that are used in the sequel.

2.1 Qualitative Spatial and Temporal Reasoning
A binary qualitative spatial or temporal constraint language
is based on a finite set B of jointly exhaustive and pairwise
disjoint relations, called base relations (Ligozat 2013) and
defined over an infinite domain D (e.g., R). The base rela-
tions of a particular qualitative constraint language can be
used to represent the definite knowledge between any two of
its entities with respect to the level of granularity provided

precedes p meets m overlaps o starts s
x y x y x y x y

during d finishes f equals eq
x y xy x = y

Figure 2: A representation of the 13 base relations b of IA, each one
relating two potential intervals x and y as in x b y; the converse of
b, i.e., b−1, can be denoted by bi and is omitted in the figure.

by the domain D. The set B contains the identity relation Id,
and is closed under the converse operation (−1). Indefinite
knowledge can be specified by a union of possible base rela-
tions, and is represented by the set containing them. Hence,
2B represents the total set of relations. The set 2B is equipped
with the usual set-theoretic operations of union and inter-
section, the converse operation, and the weak composition
operation denoted by the symbol ⋄ (Ligozat 2013). For all
r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}. The weak

composition (⋄) of two base relations b, b′ ∈ B is defined as
the smallest (i.e., most restrictive) relation r ∈ 2B that in-
cludes b◦ b′, or, formally, b⋄ b′={b′′ ∈ B | b′′∩(b◦ b′) ̸= ∅},
where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈
b ∧ (z, y) ∈ b′} is the (true) composition of b and b′. For all
r, r′ ∈ 2B, we have that r ⋄ r′ =

⋃
{b ⋄ b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative
temporal constraint language of Interval Algebra (IA), intro-
duced by Allen (Allen 1983). IA considers time intervals on
the real line, and the set of base relations B = {eq (= Id),
p, pi, m, mi, o, oi, s, si, d, di, f , fi} to encode knowl-
edge about the temporal relations between such intervals,
as described in Figure 2. As another example, the Re-
gion Connection Calculus (RCC8) (Randell, Cui, and Cohn
1992) considers spatial regions and the set of base rela-
tions B = {DC, EC, EQ, PO, TPP , TPPi, NTPP ,
NTPPi} to reason about topological relations between re-
gions. Moreover, RCC5 is a fragment of RCC8 where
boundaries of regions have no significance (Bennett 1994).

Finally, the challenge of representing and reasoning about
qualitative spatio-temporal information can be facilitated by
a qualitative constraint network (QCN), defined as follows:

Definition 1. A qualitative constraint network (QCN) is a
tuple (V,C) where:

• V = {v1, . . . , vn} is a finite set of variables over some
infinite domain D (e.g., time points or 2D regions);

• and C is a mapping C : V × V → 2B associating a re-
lation with each pair of variables s.t., ∀v ∈ V , C(v, v) =
{Id}, and, ∀v, v′ ∈ V , C(v, v′) = (C(v′, v))−1.

A simplified QCN is shown in Figure 1. For convenience,
we often consider that the set of variables of a QCN consists
of integers. Some more definitions follow.

A QCN N = (V,C) is trivially inconsistent iff ∃v, v′ ∈
V such that C(v, v′) = ∅.

A solution of a QCN N = (V,C) is a mapping f : V →
D s.t. ∀v, v′ ∈ V , ∃b ∈ C(v, v′) s.t. (f(v), f(v′)) ∈ b; N is
said to be consistent iff it admits a solution.

A QCN N = (V,C) is atomic iff ∀v, v′ ∈ V , C(v, v′) =
{b} with b ∈ B.

A scenario of a QCN N = (V,C) is a consistent atomic
QCN S = (V,C ′) s.t. ∀u, v ∈ V , C ′(u, v) ⊆ C(u, v).

Given a QSTR formalism F , we use SAT(F) to refer to
the problem of deciding whether a QCN is consistent.

The constraint graph of a QCN N = (V,C), denoted by
GN , is an undirected graph (V,E) where for all i, j ∈ V
with i ̸= j, {i, j} ∈ E iff C(i, j) ̸= B. We focus on qual-
itative formalisms where for every not trivially inconsistent
QCN N , if GN is an acyclic graph then N is consistent
(this is generally the case for most well-known QSTR cal-
culi (Dylla et al. 2017)).

Given an undirected graph G, the set of its vertices is de-
noted by V (G) and that of its edges by E(G). In addition,
we use v(G) and e(G) to denote the number of its vertices
and that of its edges, respectively.

The following notational conventions are used throughout
the paper for every QCN N = (V,C).

For two variables v, v′ ∈ V , we use N [v, v′] to denote the
relation C(v, v′).

For V ′ ⊆ V , N↓V ′ denotes the QCN N restricted to V ′.
For two variables v, v′ ∈ V and a relation r ∈ 2B, we use

v r v′ to denote that C(v, v′) = r when there is no ambiguity
about the considered QCN.

For two variables v, v′ ∈ V and a relation r ∈ 2B, we use
N[v,v′]/r to denote the result of substituting C(v, v′) with
r in N . Formally, N[v,v′]/r is the QCN (V,C ′) defined by
C ′(v, v′) = r, C ′(v′, v) = r−1 and, ∀(u, u′) ∈ (V × V) \
{(v, v′), (v′, v)}, C ′(u, u′) = C(u, u′).

Finally, we use [[N]] to denote the set {(i, j) ∈ V × V :
i < j}. Furthermore, [[N]]

s is used to denote the set
{(i, j) ∈ [[N]] : N [i, j] ̸= B}.

2.2 Propositional Logic and the SAT Problem
The language of propositional logic is inductively defined
from a countable set of propositional variables, denoted by
P , and using the logical connectives ∧, ∨, ¬ and →. No-
tationally, we use the letters p, q and r, possibly primed
and/or with subscripts and/or with superscripts, to denote
the propositional variables. In addition, given a formula ϕ,
we use V ar(ϕ) to denote the set of variables occurring in ϕ.

An interpretation of ϕ is a function ω : V → {0, 1} with
V ar(ϕ) ⊆ V . This function is inductively extended to the
propositional formulas as usual. We say that an interpreta-
tion ω of ϕ is a model of this formula, written ω |= ϕ, if the
identity ω(ϕ) = 1 holds. A formula is said to be satisfiable
if it admits at least one model; otherwise, it is unsatisfiable.
The SAT problem is a decision problem that consists in de-
termining whether a propositional formula is satisfiable.

We also use in this paper one of the well-known opti-
mization generalizations of the SAT problem, called Par-
tial MaxSAT. In sum, the MaxSAT problem is the prob-
lem of finding an assignment that satisfies as many clauses
of a given set of clauses as possible (Johnson 1974).
Then, the Partial MaxSAT problem is an extension of the
MaxSAT problem defined as follows: an instance Ω of Par-
tial MaxSAT (Miyazaki, Iwama, and Kambayashi 1996;
Cai et al. 2014) is a set of hard and soft clauses, and a solu-
tion ω of Ω is an assignment that satisfies the hard clauses

and maximizes the number of satisfied soft clauses.

3 Consistent Decomposition
In this section, we formally introduce and study the problem
of decomposing an inconsistent constraint network into con-
sistent components, as well as certain optimization versions
of this problem.

3.1 Problem Statement
Let us begin by defining the central object of our study.

Definition 2. Let N = (V,C) be a QCN, I a subset of [[N]]
and α a strictly positive integer. A (α, I)-decomposition of
N is a multiset {N1, . . . ,Nα} of α QCNs over the same set
of variables V where:

1. for all i, j ∈ V and for all l ∈ {1, . . . , α}, Nl[i, j] =
N [i, j] or Nl[i, j] = B;

2. for all (i, j) ∈ I and for all l ∈ {1, . . . , α}, Nl[i, j] =
N [i, j];

3. for all (i, j) ∈ [[N]], there exists l ∈ {1, . . . , α} s.t.
Nl[i, j] = N [i, j];

4. for all l ∈ {1, . . . , α}, Nl is consistent.

Property 1 states that each constraint in each component
of the decomposition is either specified in the same way as
the original QCN or universal. It allows us to avoid having
a non-universal constraint that does not occur in the original
QCN. Property 2 requires that the constraints corresponding
to the elements of I in the original QCN be satisfied by all
components. Intuitively, the set I is used to represent the
constraints that are necessary; the other constraints can be
seen as possible in a component. Property 3 says that each
constraint in the original QCN must be satisfied in at least
one component. Property 4 ensures that all components are
consistent.

In the sequel, we use I-decomposition to refer to any
(α, I)-decomposition (α is arbitrary).

Given a QSTR formalism F , we use ConsDec(F) to de-
note the decision problem defined as follows:
Input: A QCN N , a subset I ⊆ [[N]] and a strictly positive
integer α.
Output: Decide whether N admits a (α, I)-decomposition.

3.2 Computational Complexity
Our first complexity result relates the intractability of the de-
composition problem to the intractability of the consistency
problem.

Theorem 1. For every QSTR formalism F , if SAT(F) is
NP-hard, then ConsDec(F) is also NP-hard.

Proof. It is a direct consequence of the fact that a QCN N
is consistent iff N admits a (1, ∅)-decomposition.

Corollary 1. The problems ConsDec(RCC5),
ConsDec(RCC8) and ConsDec(IA) are NP-complete.

Proof. The proof of NP-hardness is a consequence of The-
orem 1, and the fact that SAT(RCC5), SAT(RCC8) and
SAT(IA) are NP-hard. Furthermore, ConsDec(RCC5),

ConsDec(RCC8) and ConsDec(IA) clearly belong to NP
since we can build a proof that a QCN admits a (α, I)-
decomposition that is verifiable in polynomial time. Specif-
ically, a proof can be a set of α QCNs with associated sce-
narios, which is verifiable by checking that the properties in
Definition 2 are satisfied.

For Point Algebra (PA) (Vilain, Kautz, and van Beek
1990), with B = {<,=, >}, even though the problem
SAT(PA) is tractable, we show that ConsDec(PA) is not.

Theorem 2. The problem ConsDec(PA) is NP-complete.

Proof. The proof that ConsDec(PA) belongs to NP is sim-
ilar to the one provided in Corollary 1. To prove NP-
hardness, we provide an encoding of the well-known NP-
hard problem of 3-coloring into ConsDec(PA). Let G =
(V,E) be an undirected graph s.t. V = {1, . . . , n}. To de-
fine our encoding, we consider that each element of V is a
variable. Furthermore, we consider an additional variable
n + 1. Thus, the set of variables of our encoding, denoted
by NG, is V ∪ {n + 1}. The constraints of NG are defined
as follows:

• for every i ∈ V , NG[i, n+ 1] = {=}; and
• for every {i, j} ∈ E with i < j, NG[i, j] = {<}.

Let I = {(i, j) : {i, j} ∈ E, i < j}. We now show that G
admits a 3-coloring iff NG admits a (3, I)-decomposition.
We start with the only if part. Let {Vr, Vg, Vb} be a partition
of V that corresponds to a 3-coloring. Then, for each c ∈
{r, g, b}, we define the QCN N c as follows:

• for every i ∈ Vc, N c[i, n+ 1] = {=};
• for every {i, j} ∈ E with i < j, N c[i, j] = {<}; and
• for every {i, j} /∈ E, N c[i, j] = {<,=, >}.

Clearly, N c is inconsistent iff there exist i, j ∈ V s.t.
N c[i, n + 1] = {=}, N c[j, n + 1] = {=} and {i, j} ∈ E
(which leads to N c[i, j] = {<}). Knowing that the vertices
in Vc can have the same color, we obtain that N c is con-
sistent for c ∈ {r, g, b}. It follows that {N r,N g,N b} is a
(3, I)-decomposition of NG. For the if part, we only need to
associate a distinct color to each element of the considered
(3, I)-decomposition: a vertex i gets a color c if NG[i, n+1]
belongs to the component associated with c.

Theorem 2 may be applied to other polynomial (frag-
ments of) calculi that embed PA, e.g., pointizable IA (Vilain,
Kautz, and van Beek 1990; Ghallab and Alaoui 1989).

3.3 Optimization Versions
In this work, we are also interested in certain optimization
versions of our original problem, viz., minimizing the num-
ber of components and maximizing the similarity among
components, respectively.

Minimizing Number of Components We call a minimum
I-decomposition of a QCN N any (α, I)-decomposition of
N where there is no (β, I)-decomposition s.t. β < α.

The following theorem is mainly a consequence of Nash-
Williams formula (Nash-Williams 1964). In particular, it
provides an upper bound for the minimum number of com-
ponents in the case where there is no required common part.
Theorem 3. For every not trivially inconsistent QCN N ,
there exists a (α, ∅)-decomposition of N s.t. α =
max{⌈e(G′)/(v(G′)− 1)⌉ : G′ ∈ Ind(GN)}, where
Ind(GN) is the set of induced subgraphs of GN .

Proof. Using the Nash-Williams formula, we know that
the minimum number of forests covering the edges of GN
is equal to α = max{⌈e(G′)/(v(G′)− 1)⌉ : G′ ∈
Ind(GN)}. For every subgraph H = (V,E′) of GN , we
define NH = (V,CH) as follows:

• for every {i, j} ∈ E′, CH(i, j) = N [i, j]; and
• for every {i, j} /∈ E′, CH(i, j) = B.

Clearly, H is the constraint graph of NH . Furthermore, us-
ing the fact that every not trivially inconsistent QCN having
an acyclic constraint graph is consistent, we obtain that NH

is consistent for every acyclic subgraph H of GN . Conse-
quently, N admits a (α, ∅)-decomposition.

It is worth noting that the previous theorem gives
an attainable upper bound; consider, for instance, any
QCN in IA where each cycle in the constraint graph
corresponds to a sequence of constraints of the form
i1{m}i2{m} · · · ik−1{m}ik{m}i1. Indeed, in this case, a
component is consistent if and only if its associated con-
straint graph is acyclic.

Using the fact that max{⌈e(G′)/(v(G′)− 1)⌉ : G′ ∈
Ind(GN)} ≤ ⌈n/2⌉, we obtain the following property.
Corollary 2. For every not trivially inconsistent QCN N ,
there exists a (α, ∅)-decomposition of N s.t. α ≤ ⌈n/2⌉.

The proposition below provides a more specific upper
bound for the minimum number of components in the case
of PA.
Proposition 1. If N is a not trivially inconsistent QCN in
PA, then N admits a (3, ∅)-decomposition.

Proof. We define the decomposition D = {N>,N<,N=}
as follows: for every b ∈ {<,=, >} and every (i, j) ∈ [[N]],
Nb[i, j] = {b}. It is straightforward to show that the com-
ponents of D are all consistent.

Maximizing Similarity among Components In this sec-
tion, we focus on maximizing the similarity between the
components of the decomposition. This can be seen as a way
to stay close to the original QCN and to reduce the number
of constraints that allow each component to be distinguished
from the rest. The similarity is quantified through the com-
mon non-universal constraints: the larger the common part,
the greater the similarity.

Given a (α, I)-decomposition D = {N1, . . . ,Nα} of a
QCN N , we use σ(D) to denote the set {(i, j) ∈ [[N]]

s
:

Nl[i, j] = N [i, j] for every l ∈ {1, . . . , α}}.

A (α, I)-decomposition (resp. I-decomposition) D is
said to be maximal if there is no (α, I)-decomposition (resp.
I-decomposition) D′ s.t. σ(D) ⊊ σ(D′). Moreover, D is
said to be a maximum (α, I)-decomposition (resp. maximum
I-decomposition) if there is no (α, I)-decomposition (resp.
I-decomposition) D′ s.t. |σ(D)| < |σ(D′)|.

We now establish a relationship between the problem of
finding a maximum decomposition and that of maximum
matching in graph theory. Let us recall that a matching in
a graph G = (V,E) is a set of pairwise non-adjacent edges
(i.e., no two edges share common vertices). A maximum
matching is a matching of largest possible size. We use ν(G)
to denote the matching number of a graph G, i.e., the size of
a maximum matching. It deserves to be mentioned that the
problem of finding a maximum matching is tractable using,
for instance, the blossom algorithm that runs in O(|E||V |2)
time (Edmonds 1965).
Theorem 4. If D is a maximum ∅-decomposition of a QCN
N , then |σ(D)| ≥ ν(GN).

Proof. Let M be a maximum matching of GN and S =
{(i, j) ∈ [[N]] : {i, j} ∈ M}. For every (i, j) ∈ [[N]]

s \ S,
we define the QCN N ij over the variables of N as follows:

• for every (i′, j′) ∈ S ∪ {(i, j)}, N ij [i′, j′] = N [i′, j′];
• for every (i′, j′) ∈ [[N]] \ (S ∪ {(i, j)}), N ij [i′, j′] = B.

Since M is a matching, we obtain for every (i, j) ∈ [[N]]
s\S

that GN ij is an acyclic graph, and it follows that N ij is
consistent. So, D = {N ij : (i, j) ∈ [[N]]

s \ S} is a ∅-
decomposition of N where |σ(D)| = ν(GN).

Note that the previous theorem provides an attainable
lower bound; consider, for example, a QCN N of four vari-
ables in IA where, ∀ (i, j) ∈ [[N]], N [i, j] = {m}.

4 Solving Approaches
In this section, we present our diverse approaches for obtain-
ing consistent decompositions.

4.1 Greedy Constraint-based Methods
In Algorithms 1 and 2 we present two greedy approaches
for tackling the problems of admitting decompositions and
its optimization versions, viz., minimizing number of com-
ponents and maximizing similarity among components.

Both of these algorithms operate as follows: so long as
there are constraints that are not part of any component in
the under-construction decomposition, a new component is
created that is guaranteed to be consistent, and then it is con-
sistently saturated with as many of the aforementioned con-
straints as possible. In the case of Algorithm 1, every new
component is just a QCN comprising solely universal con-
straints (and, of course, the constraints in I ⊆ [[N]]

s, if they
exist) and a single (other) non-universal constraint from the
original inconsistent QCN. In the case of Algorithm 2, ev-
ery new component is a QCN whose constraint graph corre-
sponds to a spanning tree of the original QCN, computed us-
ing Kruskal’s algorithm (Kruskal 1956); each spanning tree
is differentiated by at least one new constraint from the orig-
inal QCN. As the subset I ⊆ [[N]]

s may in itself not form

Algorithm 1: FINDDECOMPOSITION(N , I, f)
in : A QCNN = (V,C), a set I ⊆ [[N]]s, and a

function f ∈ {min,max}
out : A set D of QCNs over V

1 P ← [[N]]s \ I;
2 D ← ∅;
3 while P ̸= ∅ do
4 N ′ ← N[i,j]/B,∀(i,j)∈[[N]]s\I ;
5 Let (i, j) ∈ P ;
6 N ′[i, j]← N [i, j];
7 if ¬SAT (N ′) then return ∅;
8 P ′ ← SATURATE(N ,N ′, [[N]]s \ {(i, j)}, f,D);
9 P ← P \ (P ′ ∪ {(i, j)});

10 D ← D ∪ {N ′};
11 return D

Algorithm 2: FINDDECOMPOSITION(N , f)
in : A QCNN = (V,C) and a function

f ∈ {min,max}
out : A set D of QCNs over V

1 P ← [[N]]s;
2 D ← ∅;
3 while P ̸= ∅ do
4 N ′ ← ⊤V ;
5 Let (i, j) ∈ P ;
6 eij ← {i, j, weight = |E(GN)|};
7 G← MAXIMUMSPANNINGTREE(GN ∪ {eij});
8 E ← {(i, j) | {i, j} ∈ E(G) ∧ i < j};
9 for (i, j) ∈ E do

10 N ′[i, j]← N [i, j];
11 P ′ ← SATURATE(N ,N ′, [[N]]s \ E, f,D);
12 P ← P \ (P ′ ∪ E);
13 D ← D ∪ {N ′};
14 return D

Algorithm 3: SATURATE(N ,N ′, P, f,D)
in : A QCNN = (V,C), a QCNN ′ withN ′ ⊇ N , a

set P ⊆ [[N]]s, a function f ∈ {min,max}, and
a set D of QCNs over V

out : A set P ′ ⊆ [[N]]s s.t. P ′ ⊆ P
1 P ′ ← ∅;
2 while P ̸= ∅ do
3 Let (i, j) ∈ arg f(i′,j′)∈P (ΣM∈D[M[i′, j′] =

N [i′, j′]]);
4 N ′[i, j]← N [i, j];
5 if SAT (N ′) then
6 P ′ ← P ′ ∪ {(i, j)};
7 else
8 N ′[i, j]← B;
9 P ← P \ {(i, j)};

10 return P ′

a tree (of constraints), and to maintain its simplicity, Algo-
rithm 2 does not support the use of such a subset.

The consistent saturation of the components is performed
by Algorithm 3, which iterates all constraints of the original

QCN and only keeps the ones that are characterized consis-
tent by a SAT oracle. The most important aspect of the sat-
uration algorithm is the function f ∈ {min,max} used as
parameter, which prioritizes the mininimization of compo-
nents or the maximization of similarity among components.
Specifically, this is done in the Iverson bracket in line 3 of
the algorithm, which computes how many times a certain
constraint appears in the decomposition; clearly, the max
sum should lead to the maximization of similarity among
components, and min to the minimization of their number.

4.2 Optimal SAT-based Encodings
First, we define our SAT encoding for deciding whether a
given QCN N = (V,C) admits a (α, I)-decomposition and
prove its correctness. To this end, we associate α proposi-
tional variables p1,bij , . . . , pα,bij with each base relation b ∈ B
and each ordered pair of variables (i, j) ∈ [[N]].

Our first formula says that the constraints in I are satisfied
by all the components in the (α, I)-decomposition.∧

(i,j)∈I

α∧
l=1

∨
b∈C(i,j)

pl,bij (1)

The formula below is used to ensure that each constraint
of the original QCN occurs in at least one component in the
(α, I)-decomposition.∧

(i,j)∈[[N]]\I

(

α∨
l=1

∨
b∈C(i,j)

pl,bij) (2)

The following formulas are used to require that all com-
ponents are consistent.∧

(i,j)∈[[N]]

α∧
l=1

∑
b∈B

pl,bij = 1 (3)

∧
i,j,k∈V,i<j<k

α∧
l=1

∧
b,b′∈B

(pl,bij ∧ pl,b
′

jk →
∨

b′′∈b⋄b′
pl,b

′′

ik) (4)

Formula (3) states that a constraint can be satisfied by ex-
actly one base relation in each component, and (4) ensures
that each component admits a scenario by enforcing alge-
braic closure (Ligozat 2013) on every possible atomic QCN.

Note that the sum constraints in Formula (3) can be
linearly encoded as CNF formulas in several ways (e.g.,
see (Sinz 2005)).

We use E(N , α, I) to denote the encoding consisting of
the conjunction of Formulas (1)–(4).

For every model ω of E(N , α, I), the associated decom-
position, denoted by Dω , is {Nl : l ∈ {1, . . . , α}} where
for all (i, j) ∈ [[N]],

Nl[i, j] =

{
C(i, j) if ∃b ∈ C(i, j) s.t. ω(pl,bij) = 1
B otherwise

Proposition 2. The following properties are satisfied:

1. (Soundness) if ω |= E(N , α, I), then Dω is a (α, I)-
decomposition of N ;

2. (Completeness) if E(N , α, I) is unsatisfiable, then N
does not admit any (α, I)-decomposition.

Proof.
Soundness. First, it is trivial that Dω satisfies Property 1 in
Definition 2. Furthermore, Property 2 is a consequence of
Formula (1): for all (i, j) ∈ I and l ∈ {1, . . . , α}, there is
at least one base relation b ∈ N [i, j] s.t. ω(pl,bij) = 1, which
leads to Nl[i, j] = N [i, j]. Similarly, Property 3 is a conse-
quence of Formula (2). Formulas (3) and (4) are similar to
the encoding of the consistency problem provided in (Pham,
Thornton, and Sattar 2006) and shows that every element of
Dω is consistent. It follows that Property 4 is satisfied.
Completeness. Suppose that N admits a (α, I)-
decomposition D = {N1, . . . ,Nα}. Using Property 4
in Definition 2, each element of D is consistent; we use
Sl to refer to an arbitrary scenario of Nl for every l ∈
{1, . . . , α}. We associate with D a Boolean interpreta-
tion ωD of E(N , α, I) defined as follows: for every l ∈
{1, . . . , α}, every (i, j) ∈ [[N]] and every b ∈ B, ωD(pl,bij) =

1 iff Sl[i, j] = b. Then, using the properties in Definition 2,
it is easy to check that ωD is a model of E(N , α, I). For in-
stance, ωD satisfies Formula (1) thanks to Property 2: each
scenario Sl satisfies the constraints occurring in I .

Our encoding can be adapted to compute a minimum ∅-
decomposition by using Partial MaxSAT. More precisely,
we define the hard part as the clauses obtained from
E(N , ⌈n/2⌉, ∅) and the following formulas:

⌈n/2⌉∧
l=2

[(
∨

(i,j)∈[[N]]s

∧
l′<l

(
∨

b∈B\C(i,j)

pl
′,b
ij)) → ql] (5)

⌈n/2⌉−1∧
l=2

(¬ql → ¬ql+1) (6)

where q1, . . . , q⌈n/2⌉ are fresh propositional variables: ql is
used to decide whether the number of needed components
is greater than or equal to l. Formula (5) states that if the
first l − 1 components do not cover all the constraints of
the original QCN, then we need at least l components. For-
mula (6) simply says that if we need less than l compo-
nents, then we necessarily need less than l + 1 components.
The soft part consists of the following unit clauses: ¬ql for
l = 2, . . . , ⌈n/2⌉. The unit clause ¬q1 does not belong to
the set of soft clauses since we need at least one component
in any decomposition. Note that the bound ⌈n/2⌉ comes
from Corollary 1. It is possible to obtain a smaller upper
bound using Theorem 3.

More generally, to compute a minimum I-decomposition,
we only need to use |[[N]]

s| − |I ∩ [[N]]
s| instead of ⌈n/2⌉.

This comes from the fact that each component must satisfy
at least one non-universal constraint that does not belong to
the set I .

In addition, to compute maximal and maximum (α, I)-
decompositions, we use SAT-based encodings where we par-
ticularly involve the problems of X-minimal model compu-
tation and Partial MaxSAT.

To define the notion of X-minimal model, where X is
a set of propositional variables, we use the preorder rela-
tion ⪯X over the Boolean interpretations defined as follows:
ω ⪯X ω′ if {p ∈ X : ω(p) = 1} ⊆ {p ∈ X : ω′(p) = 1}.

Definition 3 (X-minimal Model (Avin and Ben-Eliyahu-Zo-
hary 2001)). Let ϕ be a propositional formula and X a sub-
set of propositional variables. An X-minimal model of ϕ is
a model ω of ϕ where there is no model ω′ of ϕ s.t. ω′ ⪯X ω
and ω′ ̸⪯X ω .

Our encoding to compute the maximal (α, I)-
decompositions is obtained by extending the encoding
E(N , α, I). To this end, we associate with every
(i, j) ∈ [[N]]

s a distinct variable rij , which is used to
capture whether or not the constraint between i and j in
the original QCN belongs to the common part. Then, the
encoding, denoted by Em(N , α, I), is obtained by adding to
E(N , α, I) the following formula:∧

(i,j)∈[[N]]s

(¬rij →
α∧

l=1

∨
b∈C(i,j)

pl,bij) (7)

This formula states that if rij is false, then the constraint
between i and j in the original QCN occurs in the common
part. We use negative literals in the left-hand sides of the
implications to relate maximizing similarity to minimizing
the number of variables of the form rij that are assigned the
truth value 1.

Proposition 3. Let N = (V,C) be a QCN and ω a
model of Em(N , α, I). Then, ω is an X-minimal model of
Em(N , α, I), with X = {ri,j : (i, j) ∈ [[N]],N [i, j] ̸= B},
iff Dω is a maximal (α, I)-decomposition of N .

Proof.
Part ⇒. Using ω |= E(N , α, I) and Proposition 2, we
obtain that Dω is a (α, I)-decomposition of N . For the
sake of contradiction, assume that there exists a (α, I)-
decomposition D = {N1, . . . ,Nα} of N s.t. σ(Dω) ⊊
σ(D). Then, using scenarios of S1, . . . ,Sα of N1, . . . ,Nα,
respectively, we build a model ωD of Em(N , α, I) as fol-
lows: the truth values of the variables of the form pl,bij are
obtained in the same way as for the interpretation ωD built
in the proof of Proposition 2; and for all rij ∈ X , ω(rij) = 0
iff Sl[i, j] ∈ N [i, j] for every l ∈ {1, . . . , α}. Hence it fol-
lows {p ∈ X : ωD(p) = 1} ⊊ {p ∈ X : ω(p) = 1}. Conse-
quently, ω is not an X-minimal model of Em(N , α, I), and
we get a contradiction.
Part ⇐. It is mainly a consequence of the fact that if ∃ ω′

of Em(N , α, I) with {p ∈ X : ω′(p) = 1} ⊊ {p ∈ X :
ω(p) = 1}, then Dω′ is a (α, I)-decomposition (Proposi-
tion 2) and σ(Dω) ⊊ σ(Dω′), which means that Dω is not a
maximal (α, I)-decomposition.

A maximum (α, I)-decomposition can be found using the
framework of Partial MAxSAT. Indeed, the hard part con-
sists of the clauses of Em(N , α, I), and the soft part is sim-
ply the set of unit clauses ¬rij for (i, j) ∈ [[N]]

s: maximiz-
ing the number of satisfied clauses of the form ¬rij corre-
sponds to maximizing the size of the common part.

To compute a maximum I-decomposition, we only need
to consider a value of α that allows us to capture every pos-
sible common part between the components of a decompo-
sition. Since the common part can correspond to only the
constraints associated with the elements of I , a maximum
I-decomposition can be obtained by computing a maximum
(|[[N]]

s| − |I ∩ [[N]]
s|, I)-decomposition. Moreover, using

Theorem 4, a maximum ∅-decomposition is any maximum
(|[[N]]

s| − |ν(GN)|, ∅)-decomposition.

Observation An encoding for solving the MaxQCN prob-
lem (Condotta et al. 2015) can be obtained from the one used
to compute a maximum (1, ∅)-decomposition by removing
Formula (2), which is used to cover all the constraints in
the original QCN. However, we must point out that more
efficient encodings exist if one needs to only focus on the
MaxQCN problem, see (Westphal, Hué, and Wölfl 2013;
Condotta, Nouaouri, and Sioutis 2016) for example.

5 Inconsistency Measurement
In the literature, inconsistency measures are defined as func-
tions that associate non-negative values with knowledge
bases to quantify the amount of conflict. Many propos-
als for measures and systems for defining them have been
made using a variety of approaches (e.g., see (Grant and
Hunter 2011; Grant and Hunter 2013; Ammoura et al. 2017;
Bona et al. 2019)). To the best of our knowledge, there is
a unique work in the literature on inconsistency measure-
ment in qualitative spatial and temporal reasoning (Con-
dotta, Raddaoui, and Salhi 2016). However, in the realm of
temporal reasoning, a recent work has extended an inconsis-
tency measure based on paraconsistency to linear temporal
logic (Corea, Grant, and Thimm 2022). Thus, our contribu-
tion in this section adds value to the existing literature with
new measures in QSTR.

The following definition is used to present rationality pos-
tulates introduced in (Condotta, Raddaoui, and Salhi 2016).
These postulates are similar to that of Free Formula Inde-
pendence proposed in (Hunter and Konieczny 2010).
Definition 4 (C-Relaxation). Let N = (V,C) be a QCN. A
C-relaxation of N is a QCN N ′ = (V ′, C ′) s.t. V = V ′ and
N ⊆ N ′. A C-relaxation N ′ is said to be trivial if for all
i, j ∈ V , if N ′[i, j] ̸= N [i, j] then N ′[i, j] = B. A (trivial)
C-relaxation is consistent if it is a consistent QCN.

A minimal consistent C-relaxation (resp. minimal con-
sistent trivial C-relaxation) of a QCN N is a consistent C-
relaxation (resp. consistent trivial C-relaxation) N ′ such
that there exists no consistent C-relaxation (resp. consistent
trivial C-relaxation) N ′′ s.t. N ′′ ⊊ N ′.

Given a QCN N = (V,C), a pair of variables p = {i, j}
is said to be a free constraint (resp. a T-free constraint) in N
if for every minimal consistent C-relaxation (resp. minimal
consistent trivial C-relaxation) N ′, N ′[i, j] = N [i, j]. We
use FreeC(N) and TFreeC(N) to denote the set of free
constraints and that of T-free constraints, respectively. It is
straightforward to show that FreeC(N) ⊆ TFreeC(N).

We define an inconsistency measure as a mapping I from
the set of QCNs to R+

∞, i.e., the set of positive real num-

I CO DO MO FC & TFC PY SA
I1 ✓ ✓ ✓ ✓ X X
Ihs ✓ ✓ ✓ ✓ X X
I2 ✓ ✓ ✓ ✓ X ✓

Imcc ✓ X ✓ ✓ X ✓

Table 1: Compliance of inconsistency measures with postulates.

bers augmented with a greatest element denoted by ∞. The
definition of inconsistency measures is often driven by ratio-
nality postulates. In this section, we consider the following
set of fundamental postulates that mirror those introduced in
the propositional case:

• CONSISTENCY (CO): for every QCN N = (V,C),
I(N) = 0 iff N is consistent;

• DOMINANCE (DO): for all QCNs N = (V,C) and N ′ =
(V,C ′) with N ′ ⊆ N , I(N) ≤ I(N ′);

• MONOTONICITY (MO): for every QCN N = (V,C) and
every V ′ ⊆ V , I(N↓V ′) ≤ I(N);

• FREE CONSTRAINT (FC): for every QCN N = (V,C)
and every {i, j} ∈ FreeC(N), I(N[i,j]/B) = I(N);

• T-FREE CONSTRAINT (TFC): for every QCN N =
(V,C) and every {i, j} ∈ TFreeC(N), I(N[i,j]/B) =
I(N);

• PENALTY (PY): for every QCN N = (V,C) and ev-
ery i, j ∈ V with i ̸= j and {i, j} /∈ FreeC(N),
I(N[i,j]/B) < I(N);

• SUPER-ADDITIVITY (SA): for every QCNs N = (V,C)
and N ′ = (V ′, C ′) with V ∩ V ′ = ∅, I(N ⊕ N ′) ≥
I(N) + I(N ′), where N ⊕ N ′ = (V ∪ V ′, C ′′) with
C ′′(i, j) = C(i, j) if i, j ∈ V , C ′′(i, j) = C ′(i, j) if
i, j ∈ V ′, and C ′′(i, j) = B in any other case.

Using FreeC(N) ⊆ TFreeC(N), we know that the prop-
erty T-FREE CONSTRAINT is stronger than FREE CON-
STRAINT.

Our decomposition-based inconsistency measures are
defined as follows, where Dec(N) is the set of ∅-
decompositions of N and min ∅ = ∞:

• I1(N) = min{|D| − 1 : D ∈ Dec(N)};

• I2(N) = min{|[[N]]
s| − |σ(D)| : D ∈ Dec(N)}.

One can easily see that I1 and I2 can be computed
through a single minimum ∅-decomposition and a single
maximum ∅-decomposition, respectively.

Our two inconsistency measures can be seen as counter-
parts of measures introduced in the literature in the case
of propositional knowledge bases. Indeed, I1 is similar to
the measure Ihs, which is based on the minimum number
of interpretations that satisfy all formulas in the knowledge
base (Thimm 2016), whereas I2 is similar to the measure
Imcc, which is based on maximizing the number of shared
formulas between maximal consistent subsets that cover the
whole knowledge base (Ammoura et al. 2017).

d Naivemin
IA SpanTmin

IA Naivemax
IA SpanTmax

IA

4
2 | 0.95
85 | 1.8k

2 | 0.95
67 | 1.7k

2.0 (3) | 0.95
85 | 1.8k

2 | 0.95
67 | 1.7k

6
2 | 0.96

128 | 3.2k
2 | 0.96

110 | 3.1k
2.1 (3) | 0.97
132 | 3.0k

2 | 0.96
110 | 2.9k

8
2 | 0.95
167 | 4.0k

2 | 0.95
148 | 4.0k

2.5 (4) | 0.95
212 | 4.2k

2 | 0.95
148 | 3.7k

10
2 | 0.90

202 | 4.5k
2 | 0.90

180 | 4.5k
3.8 (12) | 0.90

392 | 6.5k
2.0 (3) | 0.90
185 | 4.2k

12
2 | 0.84

237 | 5.0k
2 | 0.83

210 | 4.9k
6.0 (14) | 0.84
716 | 10.9k

2.3 (3) | 0.83
249 | 5.1k

14
2 | 0.72

277 | 4.8k
2 | 0.72

245 | 4.8k
8.9 (15) | 0.74
1.2k | 15.6k

2.7 (3) | 0.73
346 | 6.1k

Table 2: Evaluation with IA networks of model A(n = 20, d, l =

6.5); we present
avg. (max) # of components | avg. similarity
avg. # of oracle calls | avg. # of visited nodes

.

Table 1 presents the compliance of the four measures I1,
Ihs, I2, and Imcc with the rationality postulates under con-
sideration. A comparison between I1 and Ihs reveals their
similarity. However, there is a disagreement between I2
and Imcc regarding DOMINANCE. In fact, the definition
of this postulate bears resemblance to WEAK DOMINANCE
rather than DOMINANCE, and Imcc satisfies WEAK DOMI-
NANCE (Ammoura et al. 2017).

6 Experiments
With respect to the two flavours of ∅-decompositions dis-
cussed in this work, viz., minimum and maximum ∅-
decompositions, for minimizing the number of components
and maximizing the similarity among components, respec-
tively, we implement and evaluate a variety of tools. Specif-
ically, we evaluate two in-house implementations of the
constraint-based FINDDECOMPOSITION algorithms, one
for the naive variant, viz., Naive, and one for the one utiliz-
ing spanning trees, viz., SpanT, respectively, and implemen-
tations of our SAT encodings using the PySAT toolkit (Ig-
natiev, Morgado, and Marques-Silva 2018) and the offered
RC2 solver (Ignatiev, Morgado, and Marques-Silva 2019).

6.1 Dataset & Setup
We considered RCC8 and IA networks generated by the
standard A(n, d, l) model (Renz and Nebel 2001), used ex-
tensively in the literature. In short, A(n, d, l) creates net-
works of size n, constraint degree d, and an average number
l of base relations per constraint. We considered 100 incon-
sistent networks for each average node degree d between 4
and 14 with a 2-degree step and for each of the calculi of
RCC8 and IA; hence, 1 200 networks in total. For RCC8,
we have n = 30 and l = 4.0, and for IA, n = 20 and
l = 6.5. For this range of node degrees d, the networks
of model A(n, d, l) are certain to lie within the phase tran-
sition region (Renz and Nebel 2001). The size of the net-
works is consistent with what has been used in the literature
for similar optimization problems in order to present results
that are as complete as possible, cf. (Condotta et al. 2015;

4 6 8 10 12 14
avg. degree (d)

0

1

2

3

4
av

g.
 C

PU
 ti

m
e

(s
ec

)

Evaluation with IA networks of model A(n = 20, d, l = 6.5)
Naivemax

IA
Naivemin

IA
SpanTmax

IA
SpanTmin

IA

Figure 3: Runtime for the IA networks of Table 2.

Condotta, Nouaouri, and Sioutis 2016) (see also Table 3
here). For the experiments we used an Intel® Core™ CPU
i7-12700H @ 4.70GHz, 16 GB of RAM, and the Ubuntu
Linux 22.04 LTS OS, and one CPU core per network. All
coding/running was done in Python 3.10.6; the code is avail-
able at: https://msioutis.gitlab.io/software/

6.2 Results & Remarks
In what follows, we only report on results pertaining to IA,
as the ones for RCC8 are qualitatively similar.

The results for the constraint-based variants, along with
the metrics used, are shown in Table 2 and Figure 3. Some-
what surprisingly, opting to minimize the number of com-
ponents or maximize the similarity among components, i.e.,
setting the function f to min or max in Algorithm 3, respec-
tively, does not yield any notable difference with respect to
the similarity achieved, which is already high in both cases
(cf. last column in Table 3). This result is of course wel-
come, and it indicates that a single arbitrary iteration of the
constraints of a QCN is sufficient to characterize a majority
of consistent constraints. What is more, we found the use
of the spanning trees to not provide any significant benefit,
except in the case of maximizing similarity, where it clearly
outperforms the Naive algorithm. This is because the Naive
algorithm is too biased in favour of maximizing similarity
by prioritizing the same (as in previous components) con-
sidered constraints in every call, whereas SpanT mitigates
this issue via the use of a tree that spans over constraints
guaranteed to be consistent.

The results for our SAT encodings are shown in Table 3;
these are optimal with respect to minimum and maximum ∅-
decompositions, and hence can be contrasted with the ones
provided by the greedy constraint-based approaches. We
can see that the greedy approaches already provide excep-
tionally good results accross all metrics, if optimality is of
no or little concern; we only note a moderate deterioration
with respect to maximizing similarity as the networks be-
come denser, which is expected.

With respect to the given dataset, we can conclusively
state that the problem of minimizing the number of compo-
nents is very easy, and we conjecture that this would be the
case in general too, as removing half of the constraints in any
realistic constraint configuration would deem the network
consistent. On the other hand, the problem of maximizing
the similarity among components is very difficult, and we
argue that it is also a very interesting problem to solve, in

d RC2min
IA RC2max

IA ≤

4 2 | 0.55 • 0.01s 2 | 0.95 • 0.02s
0.95

1

6 2 | 0.45 • 0.02s 2.0 (3) | 0.97 • 0.12s
0.97

1.0 (2)

8 2 | 0.47 • 0.04s 2.1 (4) | 0.97 • 37.64s
0.97

1.3 (4)

10 2 | 0.42 • 0.04s 2.4 (4) | 0.96 • 131.41s (15)
0.97

2.5 (9)

12 2 | 0.37 • 0.03s 2.6 (5) | 0.96 • 446.67s (65)
0.96

4.4 (10)

14 2 | 0.30 • 0.03s ? | ? | ? • inf (100)
0.93

8.9 (15)

Table 3: Evaluation with the IA networks of Table 2, using a 1h
timeout per network; avg. (max) # of components | avg. similarity
• avg. SAT solving time (# of timeouts), plus, in the last column,

we present
theoretical maximum similarity attainable
avg. (max) # of repairs needed (MaxQCN)

.

the sense that, given an inconsistent network, having many
(almost) maximally consistent components to choose from
lies at the heart of inconsistency resolution.

7 Conclusion and Perspectives
We presented and studied decomposition problems that aim
to deal with inconsistency in QSTR. We provided several
theoretical results on computational complexity, and bounds
on the number of components and the number of com-
mon constraints. We introduced and implemented two ap-
proaches for solving the considered decomposition prob-
lems: greedy constraint-based algorithms and optimal SAT-
based encodings. To demonstrate the interest of decompo-
sition in dealing with inconsistency, we proposed two in-
consistency measures, which can be seen as counterparts to
measures introduced in the propositional case.

The need for inconsistency-tolerant systems is shown by
the many ways inconsistency can occur in real-world situa-
tions. We believe that our work is an interesting step in this
direction for QSTR-based systems and can be extended in
several directions. It is worthwhile to study other versions
of decompositions by tacking into account new parameters
such as the number of solutions and the number of unspeci-
fied constraints in a component. Allowing inconsistent com-
ponents in a decomposition by involving inconsistency mea-
sures is also an interesting perspective. Further, providing
more compact SAT encodings based on tree decompositions
and/or chordal graphs and/or available Horn theories could
be a suitable extension. Finally, we would like to extend
our toolkit with constraint-based solvers based on a notion
of frozen constraints (Condotta, Ligozat, and Saade 2007),
in order to fully support mandatory/structural constraints.

Acknowledgements The work was partially funded by the
Agence Nationale de la Recherche (ANR) for the “Hybrid
AI” project that is tied to the chair of Dr. Sioutis, and the
I-SITE program of excellence of Université de Montpellier
that complements the ANR funding.

https://msioutis.gitlab.io/software/

References
Allen, J. F. 1983. Maintaining Knowledge about Temporal
Intervals. Commun. ACM 26:832–843.
Ammoura, M.; Salhi, Y.; Oukacha, B.; and Raddaoui, B.
2017. On an MCS-based inconsistency measure. Int. J. Ap-
prox. Reasoning 80:443–459.
Avin, C., and Ben-Eliyahu-Zohary, R. 2001. Algorithms for
Computing X-Minimal Models. In LPNMR.
Bennett, B. 1994. Spatial Reasoning with Propositional
Logics. In KR.
Besnard, P., and Hunter, A. 2008. Elements of Argumenta-
tion. MIT Press.
Bona, G. D.; Grant, J.; Hunter, A.; and Konieczny, S. 2019.
Classifying inconsistency measures using graphs. J. Artif.
Intell. Res. 66:937–987.
Brewka, G.; Dix, J.; and Konolige, K. 1997. Nonmonotonic
Reasoning: An Overview, volume 73 of CSLI Lecture Notes.
CSLI Publications, Stanford, CA.
Cai, S.; Luo, C.; Thornton, J.; and Su, K. 2014. Tailoring
Local Search for Partial MaxSAT. In AAAI.
Condotta, J.; Kaci, S.; Marquis, P.; and Schwind, N. 2010.
A Syntactical Approach to Qualitative Constraint Networks
Merging. In LPAR, volume 6397, 233–247.
Condotta, J.; Mensi, A.; Nouaouri, I.; Sioutis, M.; and Said,
L. B. 2015. A Practical Approach for Maximizing Satisfi-
ability in Qualitative Spatial and Temporal Constraint Net-
works. In ICTAI.
Condotta, J.-F.; Ligozat, G.; and Saade, M. 2007. Eligi-
ble and Frozen Constraints for Solving Temporal Qualitative
Constraint Networks. In CP.
Condotta, J.; Nouaouri, I.; and Sioutis, M. 2016. A SAT
Approach for Maximizing Satisfiability in Qualitative Spa-
tial and Temporal Constraint Networks. In KR.
Condotta, J.; Raddaoui, B.; and Salhi, Y. 2016. Quantifying
Conflicts for Spatial and Temporal Information. In KR.
Corea, C.; Grant, J.; and Thimm, M. 2022. Measuring In-
consistency in Declarative Process Specifications. In BPM.
Dylla, F.; Lee, J. H.; Mossakowski, T.; Schneider, T.; van
Delden, A.; van de Ven, J.; and Wolter, D. 2017. A Survey
of Qualitative Spatial and Temporal Calculi: Algebraic and
Computational Properties. ACM Comput. Surv. 50:7:1–7:39.
Edmonds, J. 1965. Paths, Trees, and Flowers. Canadian
Journal of Mathematics 17:449–467.
Ghallab, M., and Alaoui, A. M. 1989. Managing Efficiently
Temporal Relations Through Indexed Spanning Trees. In
IJCAI.
Grant, J., and Hunter, A. 2011. Measuring the Good and the
Bad in Inconsistent Information. In IJCAI.
Grant, J., and Hunter, A. 2013. Distance-Based Measures
of Inconsistency. In ECSQARU.
Homem, T. P. D.; Santos, P. E.; Costa, A. H. R.;
da Costa Bianchi, R. A.; and de Mántaras, R. L. 2020.
Qualitative case-based reasoning and learning. Artif. Intell.
283:103258.

Hunter, A., and Konieczny, S. 2010. On the measure of con-
flicts: Shapley Inconsistency Values. Artif. Intell. 174:1007–
1026.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python toolkit for prototyping with SAT oracles.
In SAT.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2019.
RC2: an Efficient MaxSAT Solver. J. Satisf. Boolean Model.
Comput. 11:53–64.
Johnson, D. S. 1974. Approximation Algorithms for Com-
binatorial Problems. J. Comput. Syst. Sci. 9:256–278.
Kruskal, J. B. 1956. On the shortest spanning subtree of
a graph and the traveling salesman problem. Proc. Amer.
Math. Soc. 7:48–50.
Ligozat, G. 2013. Qualitative Spatial and Temporal Rea-
soning. ISTE. Wiley.
Miyazaki, S.; Iwama, K.; and Kambayashi, Y. 1996.
Database Queries as Combinatorial Optimization Problems.
In CODAS, 477–483.
Nash-Williams, C. S. J. A. 1964. Decomposition of Finite
Graphs Into Forests. Journal of the London Mathematical
Society s1-39:12–12.
Pham, D. N.; Thornton, J.; and Sattar, A. 2006. Towards an
Efficient SAT Encoding for Temporal Reasoning. In CP.
Randell, D. A.; Cui, Z.; and Cohn, A. 1992. A Spatial Logic
Based on Regions and Connection. In KR.
Renz, J., and Nebel, B. 2001. Efficient Methods for Quali-
tative Spatial Reasoning. J. Artif. Intell. Res. 15:289–318.
Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In CP.
Sioutis, M., and Wolter, D. 2021. Qualitative Spatial and
Temporal Reasoning: Current Status and Future Challenges.
In IJCAI.
Suchan, J.; Bhatt, M.; and Varadarajan, S. 2021. Common-
sense visual sensemaking for autonomous driving - On gen-
eralised neurosymbolic online abduction integrating vision
and semantics. Artif. Intell. 299:103522.
Tanaka, K.; Berto, F.; Mares, E. D.; and Paoli, F., eds.
2013. Paraconsistency: Logic and Applications, volume 26
of Logic, Epistemology, and the Unity of Science. Springer.
Thimm, M. 2016. On the expressivity of inconsistency mea-
sures. Artif. Intell. 234:120–151.
Vilain, M.; Kautz, H.; and van Beek, P. 1990. Readings in
qualitative reasoning about physical systems. Morgan Kauf-
mann Publishers Inc. chapter Constraint Propagation Al-
gorithms for Temporal Reasoning: A Revised Report, 373–
381.
Westphal, M.; Hué, J.; and Wölfl, S. 2013. On the Propa-
gation Strength of SAT Encodings for Qualitative Temporal
Reasoning. In ICTAI.

	Introduction
	Preliminary Definitions and Notations
	Qualitative Spatial and Temporal Reasoning
	Propositional Logic and the SAT Problem

	Consistent Decomposition
	Problem Statement
	Computational Complexity
	Optimization Versions

	Solving Approaches
	Greedy Constraint-based Methods
	Optimal SAT-based Encodings

	Inconsistency Measurement
	Experiments
	Dataset & Setup
	Results & Remarks

	Conclusion and Perspectives

