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Abstract

We survey the use and effect of decomposition-based techniques in qualitative spatial and

temporal constraint-based reasoning, and clarify the notions of a tree decomposition, a chordal

graph, and a partitioning graph, and their implication with a particular constraint property

that has been extensively used in the literature, namely, patchwork. As a consequence, we prove

that a recently proposed decomposition-based approach that was presented in (Nikolaou et al.,

“Fast Consistency Checking of Very Large Real-World RCC-8 Constraint Networks Using Graph

Partitioning”, in AAAI, 2014) for checking the satisfiability of qualitative spatial constraint

networks lacks soundness. Therefore, the approach becomes quite controversial as it does not

seem to offer any technical advance at all, while experimental evaluation of it in a following

work presented in (Sioutis, “Triangulation versus Graph Partitioning for Tackling Large Real

World Qualitative Spatial Networks”, in ICTAI, 2014) becomes questionable. Finally, we present

a particular tree decomposition that is based on the biconnected components of the constraint

graph of a given large network, and show that it allows for cost-free utilization of parallelism for

a qualitative constraint language that has patchwork for satisfiable atomic networks.

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in Artificial

Intelligence and, particularly, in Knowledge Representation. This field studies representations

of space and time that abstract from numerical quantities. The concise expressiveness of the

representational languages used in the qualitative approach provides a promising framework that

boosts research and applications in a plethora of areas and domains, such as ambient intelligence,

dynamic GIS, cognitive robotics, and spatiotemporal design (Hazarika 2012; Bhatt et al. 2011).

The Interval Algebra (IA) (Allen 1981) and a fragment of the Region Connection Calculus

(RCC) (Randell, Cui, and Cohn 1992), namely RCC-8, are the dominant Artificial Intelligence

approaches for representing and reasoning about qualitative temporal and topological relations

respectively. These qualitative calculi use constraints to encode knowledge about the spatial or

temporal relationships between entities in an abstract manner. Thus, the problem of reasoning

about qualitative information can be modeled as an infinite-domain variant of a Constraint

Satisfaction Problem (CSP) (Montanari 1974), for which we use the term Qualitative Constraint

Network (QCN). For instance, there are infinitely many time points or temporal intervals in the

timeline and infinitely many regions in a two- or three-dimensional space. One way of dealing

with infinite domains is using constraints over a finite set of binary relations, called base relations

(or atoms), by employing a relation algebra (Ladkin and Maddux 1994).

Given a QCN over a set of variables corresponding to a set of spatial or temporal entities, we

are particularly interested in its satisfiability problem, that is, deciding whether there exists an
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interpretation of all the variables of the QCN such that all of its constraints are satisfied by this

interpretation; such an interpretation being called a solution. The satisfiability problem is closely

related to the minimal labeling problem (MLP) (Amaneddine, Condotta, and Sioutis 2013; Liu

and Li 2012) and the redundancy problem (Duckham et al. 2014; Li et al. 2015), in the sense

that the latter two problems exhibit functions that build on the core algorithms used to obtain a

solution of a QCN. In particular, the MLP is the problem of determining all the base relations for

each of the constraints of a QCN that participate in at least one solution of the QCN, whilst the

redundancy problem is the problem of obtaining all the constraints of a QCN that do not contain

at least one base relation participating in a solution of the modified QCN that results by removing

these constraints (these constraints being referred to as non-redundant constraints, since their

removal changes the solution set of the QCN). As such, we will emphasize on the satisfiability

problem throughout the paper, and make the link whenever there is a work related to the MLP

or the redundancy problem whose results are affected by the notions and techniques that we will

survey here. The satisfiability problem in IA and RCC-8 is NP-complete in general (Renz and

Nebel 1999; Nebel and Bürckert 1995). However, there exist large maximal tractable subclasses

of relations of IA and RCC-8, which can be used to make reasoning much more efficient even in

the general NP-complete case (Nebel 1997; Renz and Nebel 2001). In recent years, many works

surfaced that use graph decomposition to significantly improve the efficiency and scalability of

practical reasoning (Sioutis and Condotta 2014; Amaneddine, Condotta, and Sioutis 2013; Sioutis

and Koubarakis 2012; Condotta and D’Almeida 2011; Sioutis, Condotta, and Koubarakis 2015; Li,

Huang, and Renz 2009; Huang, Li, and Renz 2013; Nikolaou and Koubarakis 2014; Chmeiss and

Condotta 2011; Westphal, Hué, and Wölfl 2013; Westphal and Hué 2014). All these works, make

use of a particular constraint property, namely, patchwork (Lutz and Milicic 2007; Huang 2012).

Intuitively, patchwork ensures that the combination of two satisfiable QCNs that completely agree

on the constraints between their common variables continues to be satisfiable.

The contribution of this paper is three-fold:

1. we recall the notions of a tree decomposition, a chordal graph, and a partitioning graph

that have been used in the literature, and clarify the relationship between one another, and

also their implication with patchwork;

2. consequently, we show that the approach proposed in (Nikolaou and Koubarakis 2014)

for efficiently checking the satisfiability of qualitative spatial constraint networks violates

patchwork in two ways, namely, both in the complete agreement between two satisfiable

QCNs and in the graph decomposition that is obtained, and, therefore, lacks soundness;

3. finally, we present a particular tree decomposition that is based on the biconnected

components of the constraint graph of a given large QCN, and show that it allows for

sound and cost-free utilization of parallelism for a qualitative constraint language that has

patchwork for satisfiable atomic QCNs and that it can significantly decongest search when

using it for solving non-tractable QCNs.1

As such, our paper can be viewed as a survey on the use and effect of graph decomposition

in qualitative spatial and temporal reasoning, as a response paper to (Nikolaou and Koubarakis

2014), and partially to (Sioutis 2014), and also as a report of an original decomposition approach

that paves the way for efficient utilization of parallelism.

The paper is organised as follows. In Section 2 we recall the definition of a QCN, along with the

definition of the property of patchwork. Section 3 introduces the notions of a tree decomposition

and a chordal graph, and the way they are interrelated and used in the literature. In Section 4 we

present the definition of a partitioning graph (Nikolaou and Koubarakis 2014), and prove that

it yields non-soundness when used solely with patchwork. In Section 5 we introduce a particular

tree decomposition that allows for cost-free utilization of parallelism for a qualitative constraint

language that has patchwork for satisfiable atomic QCNs. In Section 6 we briefly describe QCNs

1In whats follows, a tractable (resp. non-tractable) QCN will be a QCN whose satisfiability problem is tractable
(resp. non-tractable).
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Figure 1 The base relations of the RCC-8 constraint language

in the context of CSPs, and review some related work in the constraint programming community

that could inspire future research in the qualitative spatial and temporal reasoning community.

Finally, in Section 7 we make a discussion and conclude our work.

2 Preliminaries

A (binary) qualitative temporal or spatial constraint language is based on a finite set B of jointly

exhaustive and pairwise disjoint (JEPD) relations defined on a domain D (Ladkin and Maddux

1994), called the set of base relations. The base relations of the set B of a particular qualitative

constraint language can be used to represent the definite knowledge between any two entities

with respect to the given level of granularity. B contains the identity relation Id, and is closed

under the converse operation (−1). Indefinite knowledge can be specified by a union of possible

base relations, and is represented by the set containing them. Hence, 2B represents the total set

of relations. 2B is equipped with the usual set-theoretic operations (union and intersection), the

converse operation, and the weak composition operation denoted by � (Renz and Ligozat 2005).

The set of base relations of RCC-8 (Randell, Cui, and Cohn 1992) is the set {dc, ec, po, tpp,
ntpp, tppi, ntppi, eq}. These eight relations represent the binary topological relations between

regions that are non-empty regular closed subsets of some topological space, i.e., for any spatial

region X we have that X = c(i(X)), where i(·) specifies the topological interior of a spatial region

and c(·) the topological closure (Renz 2002a). The eight base relations of RCC-8 are depicted in

Figure 1 (for the two-dimensional case). The set of base relations of IA (Allen 1981) is the set {eq,
p, pi, m, mi, o, oi, s, si, d, di, f , fi}. These thirteen relations represent the possible relations

between time intervals, as depicted in Figure 2.

Networks of IA and RCC-8 can be modeled as particular instances of qualitative constraint

networks (QCNs), with relation eq being the identity relation Id in both cases. A qualitative

constraint network is formally defined as follows:

Definition 1 A qualitative constraint network (QCN) is a tuple (V, C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables corresponding to a set of spatial or

temporal entities;

• C is a mapping that associates a relation r ∈ 2B with each pair (v, v′) of V × V , that relation

being denoted by C(v, v′). Further, mapping C is such that C(v, v) = {Id} and C(v, v′) =

(C(v′, v))−1 for every v, v′ ∈ V .

Note that we always regard a QCN as a complete network. In what follows, given a QCN

N = (V, C) and v, v′ ∈ V , the relation C(v, v′) will sometimes be denoted by Cvv′ for simplicity.

The constraint graph of a QCN N = (V, C) is the graph (V, E), denoted by G(N ), for which we

have that (v, v′) ∈ E iff C(v, v′) 6= B and v 6= v′. (B corresponds to the universal relation, i.e., the

non-restrictive2 relation that contains all base relations, thus, it does not really pose a constraint.)

Given a QCN N = (V, C), N is said to be trivially inconsistent iff ∃v, v′ ∈ V with C(v, v′) = ∅.
Further, N↓V ′ , with V ′ ⊆ V , is the QCN N restricted to V ′. A solution of N is a mapping σ

2The result of the weak composition between any relation and the universal relation is the universal relation.
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Figure 2 The base relations of the Interval Algebra constraint language

defined from V to the domain D, yielding a valid configuration, such that ∀v, v′ ∈ V we have that

(σ(v), σ(v′)) can be described by C(v, v′), i.e., there exists a base relation b ∈ C(v, v′) such that

(σ(v), σ(v′)) ∈ b, viz., (σ(v), σ(v′)) satisfies base relation b.

Definition 2 A QCN N is satisfiable iff it admits a solution. The satisfiability problem is the

problem of determining if N is satisfiable.

A sub-QCN3 N ′ of N = (V, C), denoted by N ′ ⊆N , is a QCN (V, C ′) such that C ′(v, v′)⊆
C(v, v′) ∀v, v′ ∈ V . If b is a base relation, {b} is a singleton relation. An atomic QCN is a QCN

where each constraint is a singleton relation. A scenario S of N is a satisfiable atomic sub-QCN

of N . Given a QCN N = (V, C), a base relation b ∈ C(v, v′), with v, v′ ∈ V , is feasible (resp.

unfeasible) iff there exists (resp. there does not exist) a scenario S = (V, C ′) of N such that

C ′(v, v′) = {b}.

Definition 3 A QCN N = (V, C) is minimal iff ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a feasible

base relation of N . The minimal labeling problem (MLP) is the problem of determining all the

feasible base relations for each of the constraints of N .

Given a QCN N = (V, C), we say that a relation C(v, v′), with v, v′ ∈ V , is non-redundant in

N , if there exists a base relation b 6∈ C(v, v′) and a solution σ of the QCN N ′ = (V, C ′) defined by

C ′(v, v′) = B \ C(v, v′), C ′(v′, v) = B \ (C(v, v′))
−1

, and C ′(u, w) = C(u, w) ∀(u, w) ∈ (V × V ) \
{(v, v′), (v′, v)} such that (σ(v), σ(v′)) ∈ b. The relation is called non-redundant, because if we

were to remove it and effectively replace it with relation B, the solution set of N would be

changed. Note that by definition every universal relation B in a QCN is redundant.

Definition 4 A QCN N = (V, C) is reducible iff it comprises a redundant relation other than

relation B, and irreducible otherwise. The redundancy problem is the problem of obtaining all

the non-redundant relations in N and, hence, determining if N is reducible.

Checking the satisfiability of a QCN is NP-complete in the general case for the most well-

known and interesting calculi, such as RCC-8 (Renz and Nebel 1999) and IA (Nebel and Bürckert

1995). As a direct consequence, checking if a base relation of a QCN is feasible, or if a constraint of

a QCN is non-redundant, is also NP-complete in the general case. However, there exist maximal

tractable subclasses A⊆ 2B of the considered calculi, for which the satisfiability problem becomes

tractable through the use of a path-consistency4 algorithm.

With respect to subclasses of relations we have the following definition:

Definition 5 A subclass of relations is a subset A⊆ 2B that contains the singleton relations

of 2B and is closed under converse, intersection, and weak composition. A subclass A⊆ 2B is a

3This term is also found by the name “refined QCN” throughout the literature.
4The literature suggests the term algebraic closure (Renz and Ligozat 2005) instead, which is equivalent to a

path-consistency algorithm where the weak composition operator � is used instead of the relational composition
operator ◦ (Renz and Ligozat 2005), so we will use this more traditional term throughout the paper.
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Figure 3 Patching two QCNs of RCC-8 that agree on their common part

tractable subclass iff a QCN comprising relations solely from A is tractable. A tractable subclass

A⊆ 2B is maximal iff there exists no other tractable subclass that properly contains A.

Further, the notion of path-consistency for QCNs is defined as follows:

Definition 6 A QCN N = (V, C) is path-consistent iff ∀v, v′, v′′ ∈ V we have that C(v, v′)⊆
C(v, v′′) � C(v′′, v′).

Given a QCN N = (V, C), path-consistency can be applied on N in O(|V |3) time (Vilain,

Kautz, and Beek 1990). For the considered calculi in this paper, we have that not trivially

inconsistent and path-consistent QCNs defined on a maximal tractable subclass A⊆ 2B are

satisfiable (Nebel and Bürckert 1995; Renz and Nebel 1999).5 The maximal tractable subclasses

of relations of RCC-8 and IA are the classes Ĥ8, C8, and Q8 (Renz and Nebel 2001) and HIA (Nebel

1997) respectively. Classes Ĥ8 and HIA contain exactly those relations that are transformed to

propositional Horn formulas when using the propositional encodings of RCC-8 and IA respectively.

Further, and for RCC-8 in particular, if we denote by P8 the set of relations that belong to either

one of the classes Ĥ8, C8, and Q8, then all relations of P8 not contained in C8 contain EC and

all relations of P8 not contained in Q8 contain EQ (Renz 1999). The propositional encoding of

either C8 or Q8 is neither a Horn formula nor a Krom formula, but classes C8 and Q8 themselves

are directly related to class Ĥ8 in the sense that any QCN defined over either C8 or Q8 can be

polynomially refined to a QCN defined over Ĥ8 (Renz 1999).

Given two QCNs N = (V, C) and N ′ = (V ′, C ′), we have that N ∪N ′ yields the QCN N ′′
= (V ′′, C ′′), where V ′′ = V ∪ V ′, C ′′(u, v) = C ′′(v, u) = B for all (u, v) ∈ (V \ V ′)× (V ′ \ V ),

C ′′(u, v) = C(u, v) ∩ C ′(u, v) for every u, v ∈ V ∩ V ′, C ′′(u, v) = C(u, v) for all (u, v) ∈ (V ×
V ) \ (V ′ × V ′), and C ′′(u, v) = C ′(u, v) for all (u, v) ∈ (V ′ × V ′) \ (V × V ).

We now recall the definition of the patchwork property that was originally introduced in (Lutz

and Milicic 2007) and was shown to be satisfied by IA and RCC-8 for satisfiable atomic QCNs of

their relations.

Definition 7 A constraint language has patchwork, iff for any finite satisfiable constraint

networks N = (V, C) and N ′ = (V ′, C ′) defined on this language where ∀u, v ∈ V ∩ V ′ we have

that C(u, v) = C ′(u, v), the constraint network N ∪N ′ is satisfiable.

Huang showed that IA and RCC-8 have patchwork for certain satisfiable non-atomic QCNs of

their relations as well (Huang 2012). In particular, we have the following proposition:

Proposition 1 (Huang 2012) The qualitative constraint languages of IA and RCC-8 have

patchwork for not trivially inconsistent and path-consistent QCNs comprising relations solely from

one of the maximal tractable subclasses HIA and Ĥ8, C8, or Q8 respectively.

5Some of the cited works are based on encodings of QCNs into Boolean formulas. However, the Boolean
formulas are constructed in such a way that each solution of a formula corresponds to a not trivially inconsistent
and path-consistent QCN with relations solely from some maximal tractable subclass of relations, and vice versa.
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Intuitively, patchwork ensures that the combination of two satisfiable constraint networks

that agree on their common part, i.e., on the constraints between their common variables,

continues to be satisfiable. As an example, we can view the two QCNs of RCC-8 in Figure 3.

(Self-loops corresponding to singleton relation {EQ} and converses of constraints are not shown

for simplicity.) The QCNs of RCC-8 are atomic, as they comprise singleton relations, and are

also path-consistent, therefore, by Proposition 1 and application of the patchwork property their

union is satisfiable, since they agree on the constraints between their common variables, namely,

on C02 = {DC}. (The universal relation that exists by definition between variables 1 and 3 in the

unified QCN would result to relation C13 = {EC} if we were to calculate it, but it is not necessary

to do so unless required by the specifics of the use case at hand.)

Patchwork is closely related to the global consistency property (Renz and Ligozat 2005), which

is defined as follows:

Definition 8 A QCN N = (V, C) is globally consistent if and only if, for any V ′ ⊂ V , every

partial solution on V ′ can be extended to a partial solution on V ′ ∪ {v} ⊆ V , for any v ∈ V \ V ′.

In particular, global consistency implies patchwork, but the opposite is not true. For example,

even though RCC-8 has patchwork (Huang 2012), it does not have global consistency (Renz

and Ligozat 2005). For instance, let us consider the spatial configuration shown in Figure 4(a).

Region y is a doughnut, and region x is externally connected to it, by occupying its hole. Further,

region z is externally connected to region y. With respect to RCC-8, we know that the constraint

network defined by the set of constraints {EC(x, y), EC(y, z), EC(x, z)} is satisfiable, as it is

path-consistent and atomic. However, the valuation of region variables x and y is such that it is

impossible to extend it with a valuation of region variable z so that EC(x, z) may hold. Patchwork

allows us to disregard any partial valuations and focus on the satisfiability of the network. Then,

we can consider a valuation that satisfies the constraint network. Such a valuation is, for example,

the one presented in Figure 4(b) along with its corresponding scenario.

3 Tree Decomposition and Chordal Graph

In this section, we recall the notions of a tree decomposition and a chordal graph, and review their

use and effect in qualitative spatial and temporal reasoning in combination with patchwork6.

In what follows, we consult the book of Diestel on Graph Theory for related definitions and

properties (Diestel 2012). A tree decomposition is formally defined as follows:

Definition 9 A tree decomposition of a graph G= (V, E) is a tuple (T, X) where T = (I, F )

is a tree and X = {Xi ⊆ V | i ∈ I} a collection of clusters (subsets of V ) that satisfy the following

properties:

• For every v ∈ V there is at least one node i ∈ I such that v ∈Xi.

• For every (u, v) ∈ E there exists a node i ∈ I such that both u, v ∈Xi.

• Let i1, i2, i3 be three nodes in I such that i2 lies on the path between i1 and i3 in T . Then,

if v ∈ V belongs to both Xi1 and Xi3 , v must also belong to Xi2 .

6Some of the cited works use a property called amalgamation, which is equivalent to patchwork for satisfiable
atomic networks when the satisfiability of atomic networks can be decided by path-consistency.
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Let us view the example presented in Figure 5. In the upper part of the figure we can view

a graph G= (V, E), which can correspond to the structure of a constraint graph of a QCN. For

the moment, we consider only the solid edges to be part of G and we disregard the dashed edges

(3, 4) and (4, 5). A tree decomposition of G comprises a tree T = (I, F ) and a cluster Xi for every

node i ∈ I of that tree as shown in the lower part of the figure, e.g., Xa = {0, 1, 2}.
Tree decompositions have been explicitly introduced in qualitative reasoning by Condotta et

al. in (Condotta and D’Almeida 2011), and implicitly by Li et al. in (Li, Huang, and Renz 2009)

and Huang et al. in (Huang, Li, and Renz 2013). (The work presented in (Huang, Li, and Renz

2013) properly contains the work presented in (Li, Huang, and Renz 2009), thus, we will stick to

the former reference in what follows.)

In (Condotta and D’Almeida 2011) the authors apply path-consistency on the clusters of a

tree decomposition of the constraint graph of a QCN. The graphs induced by the clusters of

the tree decomposition are completed with the introduction of a new set of edges, called fill

edges, that correspond to the universal relation for a QCN. These fill edges for the example

graph of Figure 5 are edges (3, 4) and (4, 5). As such, the clusters of the tree decomposition

are considered to be cliques, namely, sets of vertices such that every two vertices in a set are

connected by an edge. This is done for two reasons: (i) by definition path-consistency considers

all triples of variables of a given constraint network and, hence, involves a complete graph, and

(ii) the common vertices between any two complete graphs induce a complete graph, thus, the

corresponding constraint networks will completely agree on the constraints between their common

variables and the patchwork property can be used. Patchwork is then applied to patch together

the not trivially inconsistent and path-consistent pre-convex QCNs of IA (Ligozat 2011) that

correspond to the graphs induced by the clusters of the tree decomposition in a tree-like manner

and construct a satisfiable network.

In (Huang, Li, and Renz 2013) the authors enlist a structure known as a dtree (decomposition

tree), which, as the name suggests, is very close to a tree decomposition. Without going further

into detail, a dtree is a full binary tree where the root represents a given graph and for each non-

leaf node its two children represent a partitioning of the parent graph into two subgraphs. Thus,

although a dtree is not a tree decomposition, it provides a way to construct a tree decomposition

out of a given graph. A dtree and a tree decomposition are therefore equivalent in the context of

qualitative reasoning, since omitting path-consistency checks across children of dtree nodes (as
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described in (Huang, Li, and Renz 2013)) corresponds to omitting those checks across clusters

of the tree decomposition into which the dtree is converted, as has been specifically pointed out

in (Condotta and D’Almeida 2011). Similarly to what is done in (Condotta and D’Almeida 2011),

children of dtree nodes are treated as cliques, and patchwork is considered to patch together the

path-consistent atomic QCNs of either IA or RCC-8 in a tree-like recursive manner and construct

a satisfiable network.

The observant reader will note that it would be convenient to operate directly on a tree

decomposition (T, X) of a given graph G where X would be a collection of cliques. In this

context chordal graphs become relevant. Formally, a chordal graph is defined as follows:

Definition 10 A graph G is said to be chordal (or triangulated) if every cycle of length greater

than 3 has a chord, which is an edge connecting two non-adjacent nodes of the cycle.

We then have the following proposition:

Proposition 2 (Diestel 2012) A graph G is chordal if and only if it has a tree decomposition

(T, {X1, . . . , Xn}) where cluster Xi is a clique of G for every i ∈ {1, . . . , n}.

For example, the graph presented in Figure 5, with the dashed edges included, is chordal.

Chordality checking can be done in (linear) O(|V |+ |E|) time for a given graph G= (V, E) with

the maximum cardinality search algorithm, which also constructs an elimination ordering ω as a

byproduct (Tarjan and Yannakakis 1984). If a graph is not chordal, it can be made so through

the addition of fill edges. This process is usually called triangulation of a given graph G= (V, E)

and can run as fast as in O(|V |+ (|E ⋃ F (ω)|)) time, where F (ω) is the set of fill edges that

results by following the elimination ordering ω, eliminating the nodes one by one, and connecting

all nodes in the neighborhood of each eliminated node, thus, making it simplicial in the resulting

subgraph. If the graph is already chordal, following the elimination ordering ω produced by the

maximum cardinality search algorithm guarantees that no fill edges are added, i.e., ω is actually

a perfect elimination ordering (Diestel 2012). For example, a perfect elimination ordering for the

chordal graph shown in Figure 5 would be the ordering 0→ 1→ 2→ 3→ 4→ 7→ 5→ 6→ 9→
8→ 10 of its set of nodes. In general, it is desirable to achieve chordality with as few fill edges as

possible. However, triangulating a graph with the minimum number of fill edges is known to be

NP-complete (Yannakakis 1981). As noted earlier, fill edges correspond to the universal relation

for a QCN. As such, the chordal constraint graph of a given QCN is exactly its constraint graph

augmented with constraints corresponding to the universal relation to make it chordal.

In light of Propositions 1 and 2, research efforts focused on making the constraint graph of a

given QCN chordal and restricting path-consistency to that chordal graph, while fully utilizing

maximal tractable subclasses of relations and not just base relations that are typically used to

describe only atomic networks. Towards this direction, we have the works of Chmeiss et al. for

IA (Chmeiss and Condotta 2011) and Sioutis et al. for RCC-8 (Sioutis and Koubarakis 2012). These

works were later combined in (Amaneddine, Condotta, and Sioutis 2013) to give the following

result, which is the strongest yet concerning path-consistency, patchwork, and maximal tractable

subclasses of relations:

Proposition 3 (Amaneddine, Condotta, and Sioutis 2013) For a given QCN N =

(V, C) defined over a tractable subclass of relations of a qualitative constraint language that has

patchwork for not trivially inconsistent and path-consistent QCNs comprising relations solely from

a tractable subclass of its relations, and for G= (V, E) a triangulation of its constraint graph, if

∀(i, j), (i, k), (j, k) ∈ E we have that Cij ⊆ Cik � Ckj, then N is satisfiable.

Consequently, by Propositions 1 and 3 we have the following result:

Corollary 1 For a given QCN N = (V, C) of RCC-8, or IA, with relations solely from one

of the maximal tractable subclasses Ĥ8, C8, and Q8, or HIA, respectively, and for G= (V, E) a
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Algorithm 1: PartialPathConsistency(N , G)

in : A QCN N = (V, C), and a graph G= (V, E).
output : False if the constraint network N results in a trivial inconsistency (contains the empty relation),

True if the (possibly) refined constraint network N is partially path consistent.
1 begin
2 if ∃(i, j) ∈ E(G(N )) with Cij = ∅ then
3 return False;

4 Q ← {(i, j) | (i, j) ∈ E};
5 while Q 6= ∅ do
6 (i, j) ← Q.pop();
7 foreach k such that (i, k), (k, j) ∈ E do
8 t ← Cik ∩ (Cij � Cjk);
9 if t 6= Cik then

10 if t = ∅ then
11 return False;

12 Cik ← t; Cki ← t−1;
13 Q ← Q ∪ {(i, k)};
14 t ← Ckj ∩ (Cki � Cij);
15 if t 6= Ckj then
16 if t = ∅ then
17 return False;

18 Ckj ← t; Cjk ← t−1;
19 Q ← Q ∪ {(k, j)};

20 return True;

triangulation of its constraint graph, if ∀(i, j), (i, k), (j, k) ∈ E we have that Cij ⊆ Cik � Ckj, then

N is satisfiable.

Proposition 3 generalizes the results of all the works that were discussed earlier in this section

and make use of path-consistency as the main tool for checking the satisfiability of a given

QCN, and has a great effect in the efficiency and scalability of practical reasoning. In particular,

regarding native search, an algorithm based on the work of (Bliek and Sam-Haroud 1999) was

devised, called partial path-consistency (Chmeiss and Condotta 2011), that enforces partial path-

consistency on a given QCNN = (V, C) with respect to a triangulationG= (V, E) of its constraint

graph in O(δ|E|) time, where δ is the maximum vertex degree of G.

Definition 11 Given a QCN N = (V, C) and a graph G= (V, E), N is partially path-

consistent (with respect to graph G) iff for ∀(v, v′), (v, v′′), (v′′, v′) ∈ E we have that C(v, v′)⊆
C(v, v′′) � C(v′′, v′).

The partial path-consistency algorithm of Chmeiss and Condotta is presented in Algorithm 1.

As it is suggested by Proposition 3, the partial path-consistency algorithm is able to decide the

satisfiability of a QCN when it comprises relations solely from some maximal tractable subclass of

relations, when path-consistency can yield patchwork with respect to that subclass of relations,

and when a triangulation of its constraint graph is used as the input graph in the algorithm.

The search space for non-tractable QCNs was also reduced to O(α|E|) from O(α|V |
2

) for a

backtracking algorithm (Renz and Nebel 2001), where α is the branching factor provided by

some maximal tractable subclass of relations (e.g., α= 1.4375 for class Ĥ8 of RCC-8 (Renz and

Nebel 2001)). Such a backtracking algorithm is presented in Algorithm 2. Note that if a QCN N
along with a triangulation G of its constraint graph and a maximal tractable subclass A are given

as input to the backtracking algorithm, then the algorithm is able to decide the satisfiability of

the given network N provided that path-consistency can yield patchwork with respect to A.

Regarding approaches based on encodings of QCNs into Boolean formulas, i.e., SAT-based

approaches, the implication of Proposition 3 led to significant memory and speed improvements

both for IA (Westphal, Hué, and Wölfl 2013) and for RCC-8 (Westphal and Hué 2014) targeted

implementations. Further, regarding works that consider the MLP and the redundancy problem

of a QCN, partial path-consistency has been used as the core local consistency condition to build
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Algorithm 2: PartialConsistency(N , G, A)

in : A QCN N = (V, C), a graph G= (V, E), and a subclass A.
output : Null if the constraint network N results in a trivial inconsistency, a (possibly) refined constraint

network N over A otherwise.
1 begin
2 if ! PartialPathConsistency(N , G) then
3 return Null;

4 if ∀(i, j) ∈ E we have that Cij ∈ A then
5 return N ;

6 choose constraint Cij such that Cij 6∈ A;
7 split Cij into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = Cij ;
8 foreach r ∈ {rl | 1 ≤ l ≤ k} do
9 replace Cij with r in N ;

10 result ← PartialConsistency(N , G, A);
11 if result 6= Null then
12 return result ;

13 return Null;

algorithms both for the MLP as described in (Amaneddine, Condotta, and Sioutis 2013) and for

the redundancy problem as described in (Sioutis, Li, and Condotta 2015).

Before closing this section with some strong theoretical results that concern tree decomposi-

tions and patchwork, let us introduce the treewidth of a graph. The width of a tree decomposition

(T, {X1, . . . , Xn}) is max
1≤i≤n

|Xi| − 1. The treewidth of a graph G is the minimum width possible

for arbitrary tree decompositions of G. We also recall the following result regarding the treewidth

of a graph G that is augmented with a new edge:

Theorem 1 (Elidan and Gould 2008) Let G= (V, E) be a graph of treewidth k. Then, the

treewidth of graph G′ = (V, E ∪ {e}), where e is a new edge, is at most k + 1.

In the context of QCNs, the treewidth of a QCN N is simply the treewidth of its constraint

graph G(N ).

Theorem 2 (Bodirsky and Wölfl 2011; Huang, Li, and Renz 2013) For any k, the

satisfiability problem for QCNs of treewidth at most k that are defined on a language that has

patchwork for path-consistent atomic QCNs can be solved in polynomial time.

Consequently, by Proposition 1 and Theorem 2 we have the following result:

Corollary 2 For any k, the satisfiability problem for QCNs of IA and RCC-8 of treewidth at

most k can be solved in polynomial time.

A detailed algorithm for Theorem 2 that offers an alternative to the proof sketch of Bodirsky

et al. in (Bodirsky and Wölfl 2011) is provided in (Huang, Li, and Renz 2013). (The proof sketch

in (Bodirsky and Wölfl 2011) is particular to RCC-8, but it can be generalized to IA and other

languages satisfying certain common properties.)

Further, regarding the MLP we can have the following result:

Theorem 3 For any k, the MLP for QCNs of treewidth at most k that are defined on a

language that has patchwork for path-consistent atomic QCNs can be solved in polynomial time.

Proof Let N = (V, C) be a QCN of treewidth at most k that is defined on a language that has

patchwork for path-consistent atomic QCNs. To check if a base relation b ∈ C(u, v), with (u, v) ∈
G(N ), participates in at least one solution of N , we must check if the QCN N ′ = (V, C ′) defined

by C ′(u, v) = {b}, C ′(v, u) = {b}−1, and C ′(y, w) = C(y, w) ∀(y, w) ∈ (V × V ) \ {(u, v), (v, u)}
is satisfiable, so that a scenario S = (V, C ′′) with C ′′(u, v) = {b} can be constructed out of the

admitted solution. This satisfiability check can be done in polynomial time by Theorem 2. Note
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that if (u, v) 6∈ G(N ), we must augment the constraint graph G(N ) with (u, v) to take into account

the constraint C(u, v). As such, the satisfiability check will be performed on a QCN of treewidth

at most k + 1 due to Theorem 1. (After the check, (u, v) can again be removed from G(N ).) As

we can have at most O(|B||V |2) base relations in any given QCN, it follows that we can solve the

MLP in polynomial time. 2

Consequently, by Proposition 1 and Theorem 3 we have the following result:

Corollary 3 For any k, the MLP for QCNs of IA and RCC-8 of treewidth at most k can be

solved in polynomial time.

Regarding the redundancy problem, we can have the following result:

Theorem 4 For any k, the redundancy problem for QCNs of treewidth at most k that are

defined on a language that has patchwork for path-consistent atomic QCNs can be solved in

polynomial time.

Proof Let N = (V, C) be a QCN of treewidth at most k that is defined on a language that

has patchwork for path-consistent atomic QCNs. To check if a constraint C(u, v), with (u, v) ∈
G(N ), is non-redundant in N , we must check if there exists a base relation b 6∈ C(u, v) that

participates in a solution of the modified N that results by removing C(u, v). This is equivalent

to checking if the QCN N ′ = (V, C ′) defined by C ′(u, v) = B \ C(u, v), C ′(v, u) = B \ (C(u, v))
−1

,

and C ′(y, w) = C(y, w) ∀(y, w) ∈ (V × V ) \ {(u, v), (v, u)} is satisfiable. This satisfiability check

can be done in polynomial time by Theorem 2. (Note that if (u, v) 6∈ G(N ), C(u, v) is by definition

redundant.) Since we can have at most O(|V |2) constraints in any given QCN, it follows that we

can solve the redundancy problem in polynomial time. 2

Consequently, by Proposition 1 and Theorem 4 we have the following result:

Corollary 4 For any k, the redundancy problem for QCNs of IA and RCC-8 of treewidth at

most k can be solved in polynomial time.

4 Partitioning Graph

In this section, we prove that the decomposition-based approach presented in (Nikolaou and

Koubarakis 2014) for checking the satisfiability of QCNs of RCC-8 lacks soundness, as the notion

of a partitioning graph defined in that work is not coherent with the use of patchwork upon which

it solely relies, in two ways, which we enumerate and analyse in the form of issues.

Let G= (V, E) be a graph and k a positive integer. If U ⊆ V , then G(U) will denote the

subgraph of G that is induced by the set of vertices U . A set {Vi ⊆ V | 1≤ i≤ k} with k pairwise-

disjoint elements such that
k⋃

i=1

Vi = V , is called a k-way partitioning of G. Finally, let ∅ denote the

empty, edgeless, graph. We recall the following definition of a partitioning graph from (Nikolaou

and Koubarakis 2014):

Definition 12 Let G= (V, E) be a graph and {V1, . . . , Vk} a k-way partitioning of G for

some positive integer k. A partitioning graph P of G is a graph (VP , EP , λP , GP ), where VP =

{v1, . . . , vk} is the set of its nodes, Ep the set of its edges, λP : VP → 2V a function that maps

each node of P to a partition (subset of V ) of G, and GP a set of k subgraphs (parts) of G. The

following conditions must be satisfied:

• If Gi ∈GP then the set of vertices of Gi is a superset U of λP (vi) and the set of its edges

is E(G(U)).

• Any edge in G should be present in at least one subgraph Gi ∈GP .

• An edge (vi, vj) belongs to EP if and only if Gi ∩Gj 6= ∅ (i.e., if and only if the subgraphs

Gi and Gj corresponding to nodes vi and vj respectively share a common edge).
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Figure 6 A graph and its partitioning graph with the parts comprising it (also contained in dashed
circles in the initial graph)

Let G be a graph and P = (VP , EP , λP , GP ) its partitioning graph. Then, an edge e of G

present in more than one subgraph Gi ∈GP is called a global edge. An edge e of G present in

exactly one subgraph Gi ∈GP is called a local edge.

We will now enumerate the issues that lead to non-soundness and provide counter-examples

for each case. The reader is kindly asked to refer to (Nikolaou and Koubarakis 2014) and check

that the flaws pointed out here are actually present in (Nikolaou and Koubarakis 2014).

The issues that we will enumerate will allow us to infer the following fact:

Proposition 4 The approach presented in (Nikolaou and Koubarakis 2014) for checking the

satisfiability of a QCN of RCC-8 lacks soundness. In particular, Propositions 2 and 3 in (Nikolaou

and Koubarakis 2014) do not hold.

We begin with the first issue.

Issue 1. The first issue has to do with the fact that a complete agreement on the constraints

between the common variables of two networks is not achieved in order to allow the applicability

of patchwork. Let us consider the example of Figure 6. Graph G is partitioned into two parts,

namely, G1 and G2. The partitioning graph is shown in the lower part of the figure, and it

comprises the set of nodes {a, b} and an empty set of edges. Node a corresponds to subgraph G1

and node b to subgraph G2. Its set of edges EP is empty as subgraphs G1 and G2 do not share a

common edge (that would otherwise be the global edge (0, 2)), thus, the only possible edge (a, b)

does not exist. In (Nikolaou and Koubarakis 2014) the authors perform path-consistency on the

subgraphs of a graph separately, in a parallel fashion, and then rely on the set of edges EP to

identify the subgraphs among which a complete agreement has to be ensured (the reader is kindly

asked to refer to line 7 in the function of Algorithm 2 in (Nikolaou and Koubarakis 2014)). If, as in

this example, such an edge does not exist, a complete agreement is never achieved. This can be the

cause of failing to identify inconsistencies. Let us assume that graph G, as depicted in Figure 6,

is the constraint graph of a given QCN comprising constraints C01 = C12 = C23 = C30 = {TPP}.
This yields an unsatisfiable network, as it basically infers that region 0 is properly contained in

region 2, and vice versa. Applying path-consistency on that network would result in the empty

relation assignment for constraint C02 (inconsistency). However, that constraint is never checked

in our example. Although the authors implicitly complete subgraphs G1 and G2 in order to apply

path-consistency, they do not complete these subgraphs when computing their intersection, as

clearly specified in the last bullet of Definition 12. Even if they did implicitly consider complete

subgraphs for that part of the definition, and the edge (a, b) indeed existed, line 7 in the function

of Algorithm 2 in (Nikolaou and Koubarakis 2014) still requires that an agreement should only

be achieved for every common edge of G1 and G2 (the initial non-complete subgraphs), which is
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Figure 7 A graph and its partitioning graph with the parts comprising it (also contained in dashed
circles in the initial graph)

none. If they implicitly considered complete subgraphs for that part of the algorithm too, then

this particular issue for a 2-way partitioning would be resolved. We have also verified this issue

experimentally with the implementation used in (Nikolaou and Koubarakis 2014).7

Before proceeding to the next issue, let us assume that the first issue is fixed with everything

that we propose, and a 2-way partitioning is actually valid for applying patchwork. We mean to

show, that the concept of a partitioning graph is beyond repair, unless it is structured in a way

that it defines a tree decomposition, which defeats the purpose of having to define a partitioning

graph in the first place.

The second issue follows.

Issue 2. This issue has to do with the fact that even if the first issue is resolved, the partitioning

graph can suffer from the existence of cycles that are created by subgraphs of a given graph. Let

us consider the example of Figure 7. Graph G is partitioned into four parts, namely, G1, G2, G3,

and G4. The partitioning graph is shown in the lower part of the figure, and the correspondence

between its sets of nodes and edges with the different subgraphs should be clear up to this

point. Note that all subgraphs are complete, thus, they completely overlap with each other on

the common vertices. For example, graph G1 completely overlaps with graph G2 on the edges

of the graph defined on the single common vertex 0, as their intersection yields the complete

graph on singe vertex 0. Although such an overlap is trivial, as a complete graph on a single

vertex (singleton graph) does not have any edges, it is sufficient to ensure the applicability of

patchwork for the corresponding constraint networks. (Our example can be easily extended to

non-trivial overlaps.) However, due to the last bullet of Definition 12, the partitioning graph is

unable to obtain any edges, as there can exist no global edges. In fact, even if some edges existed

in EP , in any possible combination and amount, the partitioning graph would still fail to detect

the cycle that is constructed by the complete subgraphs G1, G2, G3, and G4, namely, the cycle

defined by vertices 0, 1, 2, and 3. This cycle, as shown in the example of Figure 6, can harbor an

inconsistency. Such a cycle exists also in (Nikolaou and Koubarakis 2014, Fig. 1) between vertices

3, 4, 5, and 7 there. Patchwork alone is only valid for tree decompositions, as tree decompositions

guarantee acyclicity of cliques and, thus, do not harbor cycles with potential inconsistencies that

cannot be detected by the application of path-consistency on the different cliques. This issue was

again verified experimentally.

7https://www.dropbox.com/sh/h61edhshw5p8ne2/AAAuO0WyYB5r8cLmoRBLV8xla?dl=0
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Essentially, the approach defines a partial algorithm; a given satisfiable QCN will be shown to

be satisfiable, as the approach in (Nikolaou and Koubarakis 2014) due to disregarding constraints

operates on a less restrictive constraint graph of the input network where constraint propagation

and consistency checks are limited, whilst an unsatisfiable QCN may be shown to be satisfiable.

4.1 Impact on Performance

The main contribution of (Nikolaou and Koubarakis 2014) lies in the performance of its offered

implementation, as it promises efficiency that goes well beyond the state-of-the-art. Computing

a good k-way partitioning8 alone is among the graph partitioning problems that fall under the

category of NP-hard problems (Garey, Johnson, and Stockmeyer 1976), and solutions to these

problems are generally derived using heuristics and approximation algorithms, such as the ones

offered by the METIS9 software employed in (Nikolaou and Koubarakis 2014). We leave aside any

extra computational complexity that would result from needing to restrict a partitioning graph

to being a tree decomposition (e.g., by identifying cycles or using some recursion as in (Huang,

Li, and Renz 2013)), and focus on native search. As explained in Section 3, native search in

qualitative spatial and temporal reasoning is bound to the number of constraints of a given QCN,

and not to its number of variables as in “traditional” constraint programming. This is because,

in a sense, the constraints of a given QCN are the true variables for which we have to assign some

relation. Indeed, the search space defined in (Nikolaou and Koubarakis 2014) relies mainly on

the number of constraints of a given QCN. In particular, we can recall the following proposition

from (Nikolaou and Koubarakis 2014):

Proposition 5 (Nikolaou and Koubarakis 2014) Let G= (V, E) be the constraint graph

of a QCN of RCC-8 and P a partitioning graph of G with k parts. The search space of algorithm

DConsistency (Nikolaou and Koubarakis 2014) is O(|B|g(|B|gkm3 + kαlm3)), where g is the

number of global edges, l and m the maximum number of local edges and vertices respectively

among all parts of P , and α the branching factor of the maximal tractable subclass of relations

employed. If Π denotes the aforementioned search space, then given p processing units and

assuming a balanced partitioning among the k parts (i.e., m = |V |/k), the elapsed running time

of algorithm DConsistency is O(Π
p ).

We showed earlier that some global edges can be disregarded, thus, parameter g as defined in

Proposition 5 leads to a significantly reduced search space for the implementation of (Nikolaou

and Koubarakis 2014) with respect to the one that should normally be considered, as g has an

exponential contribution. However, even in that case, a re-evaluation of the implementation used

in (Nikolaou and Koubarakis 2014) against state-of-the-art solvers, showed that it performs very

poorly with respect to the state-of-the-art (Sioutis 2014). The work in (Sioutis 2014) does not

deal with any of the issues that we dealt with in this paper as it assumes a partitioning graph to

implicitly define a tree decomposition, thus, (Sioutis 2014) presents mostly lower bounds on the

performance of the implementation used in (Nikolaou and Koubarakis 2014).

4.2 Fixing the Issues

We noted earlier that the concept of a partitioning graph is beyond repair, unless it is structured

in a way that it defines a tree decomposition. It may seem tempting as a quick hack to triangulate

the constraint graph of a given QCN of RCC-8 and, thus, obtain a chordal constraint graph of that

QCN, and feed it directly to the partitioning algorithm described in (Nikolaou and Koubarakis

2014). This may still yield non-soundness; we explain as follows. Consider the example shown in

Figure 8 where the chordal graph G is partitioned into 3 subgraphs. The partitioning graph P is

8Good in terms of obtaining smaller components that meet specific properties, for example, a good partitioning
can be defined as one in which the number of edges running between separated components is small.

9http://glaros.dtc.umn.edu/gkhome/views/metis
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Figure 8 A chordal graph and its partitioning graph with the parts comprising it (also contained in
dashed circles in the initial graph)

such that it is unable to capture/break the cycle defined by vertices 1, 3, and 4. This cycle may

harbor an inconsistency, which will not be detected by the application of path-consistency on the

different parts of the partitioning graph. One way to force a partitioning graph into defining a tree

decomposition is using METIS in a recursive manner, as it is done in (Huang, Li, and Renz 2013).

In particular, one has to initially partition a given graph G into two parts, and then recursively

apply the same procedure on the obtained parts, until no further partitioning can occur. However,

this can be a costly operation. A faster way is to rely on chordal graphs (tree decompositions

into cliques), which can both be constructed and also yield a natural tree decomposition of their

cliques in linear time (Diestel 2012). The graphs induced by the cliques can then be collected at no

extra cost and serve as the parts of the partitioning graph; consequently, the approach described

in (Nikolaou and Koubarakis 2014) can then be carried out with soundness and completeness.

5 Towards Efficient Utilization of Parallelism

As noted, in (Nikolaou and Koubarakis 2014) the authors provided a parallel implementation for

checking the satisfiability of a QCN of RCC-8, which however lacks soundness (Proposition 4).

In this section, we present a simple decomposition scheme that exploits the sparse and loosely

connected structure of the constraint graphs of very large real world QCNs, which have been of

high interest in the recent literature (Nikolaou and Koubarakis 2014; Sioutis and Condotta 2014;

Sioutis 2014), and paves the way for efficient utilization of parallelism. Our approach is based on

extracting the smaller QCNs that correspond to the biconnected components of the constraint

graph of a given large QCN and reasoning with these smaller biconnected QCNs completely

separately, in a parallel or serial fashion, which, as our experimentation suggests, significantly

decongests search when solving non-tractable QCNs.

First, we recall a definition from (Dechter 2003) regarding biconnected graphs and components.

Definition 13 A connected graph G is said to have an articulation vertex u if there exist

vertices v and v′ such that all paths connecting v and v′ pass through u. A graph that has an

articulation vertex is called separable, and one that has none is called biconnected. A maximal

subgraph with no articulation vertices is called a biconnected component.

Intuitively, an articulation vertex is any vertex whose removal increases the number of

connected components in a given graph. From (Dechter 2003) we also have the following property:

Property 1 (Dechter 2003) Let G be a graph and {G1, . . . , Gn} its biconnected compo-

nents. Then, there exists a tree decomposition (T, {X1, . . . , Xn}) of G, where cluster Xi ⊆ V (G)

induces the biconnected component Gi of G, for every i ∈ {1, . . . , n}.
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Figure 9 A graph G (top) with its biconnected components (middle) and its tree decomposition
(bottom)

Let us now view the discussed notions in an example. Figure 9 depicts a graph G, along with

its biconnected components, and its tree decomposition. Vertices in grey color are the articulation

vertices of G. The tree decomposition comprises a tree T = (I, F ) and a cluster Xi for every node

i ∈ I of that tree, e.g., Xa = {v0, v1, v4, v5}. We can obtain the following proposition:

Proposition 6 Let N be a QCN defined on a language that has patchwork for satisfiable

atomic QCNs, and let {G1, . . . , Gk} be the biconnected components of its constraint graph G(N ).

Then, N is satisfiable iff Ni is satisfiable for every i ∈ {1, . . . , k}, where Ni is N↓V (Gi).

Proof By Property 1, the constraint graph G(N ) has a tree decomposition (T, {X1, . . . , Xk}),
where cluster Xi induces Gi, for every i ∈ {1, . . . , k}. We can also infer by Definition 13, that

∀i, j ∈ {1, . . . , k} with i 6= j, V (Gi) ∩ V (Gj) contains at most one vertex u (an articulation

vertex). If Ni is satisfiable for every i ∈ {1, . . . , k}, we can obtain a satisfiable atomic sub-QCN

of Ni, i.e., a scenario Si of Ni, for every i ∈ {1, . . . , k}. For any possible scenarios, we will have

that Si = (V (Gi), Ci) and Sj = (V (Gj), Cj) will always agree on the single unary constraint that

is defined by a single vertex u ∈ V (Gi) ∩ V (Gj) whenever we have that V (Gi) ∩ V (Gj) 6= ∅, as

by Definition 1 we have that Ci(u, u) = Cj(u, u) = {Id} ∀u ∈ V (G(N )), for any i, j ∈ {1, . . . , k}
with i 6= j. By Definition 7, we can apply patchwork to patch together all the satisfiable atomic

QCNs Si with i ∈ {1, . . . , k} in a tree-like manner and, thus, derive the satisfiability of N . If N
is satisfiable, then, clearly, Ni will be satisfiable for every i ∈ {1, . . . , k}. 2

Consequently, by Proposition 6 and the fact that IA and RCC-8 have patchwork for satisfiable

atomic QCNs of their relations (Lutz and Milicic 2007), we have the following result:

Corollary 5 Let N be a QCN of IA or RCC-8, and let {G1, . . . , Gk} be the biconnected

components of its constraint graph G(N ). Then, N is satisfiable iff Ni is satisfiable for every

i ∈ {1, . . . , k}, where Ni is N↓V (Gi).
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Algorithm 3: Decomposer(N )

in : A QCN N = (V, C).
output : A collection of QCNs.

1 begin
2 if ∃(v, v′) ∈ E(G(N )) with C(v, v′) = ∅ then
3 return {(V, C)};
4 S ← {g | g ∈ BCSubgraphs(G(N )); and |V (g)|> 2};
5 χ ← ∅;
6 while S 6= ∅ do
7 g ← S.pop();
8 Vg ← V (g); Eg ← E(g);
9 Cg ← map({((v, v′) : (B if v 6= v′ else {Id})) | v, v′ ∈ Vg});

10 foreach (v, v′) ∈ Eg do
11 Cg(v, v′) ← C(v, v′); Cg(v′, v) ← C(v′, v);

12 χ ← χ ∪ {(Vg , Cg)};
13 return χ;

Algorithm 4: Solver+(N )

in : A QCN N = (V, C).
output : True, or False.

1 begin
2 foreach n ∈ Decomposer(N ) do
3 if ! ‖ Solver(n) ‖ then
4 return False;

5 return True;

It is important to note that the proof of Proposition 6 is based on tree decompositions

whose nodes correspond to clusters where any two clusters share at most one vertex with each

other. In case two clusters share more than one vertex with each other, the involved QCNs

should be, for instance (and among other conditions), not trivially inconsistent, path-consistent,

and defined over a tractable subclass of relations of a qualitative constraint language that has

patchwork for not trivially inconsistent and path-consistent QCNs comprising relations solely from

a tractable subclass of its relations, as it is specified in Proposition 3 and considered in (Sioutis

and Koubarakis 2012) and (Chmeiss and Condotta 2011) for RCC-8 and IA respectively. A simple

algorithm for obtaining a collection of QCNs that correspond to the biconnected components

of the constraint graph of a given QCN is presented in Algorithm 3. Note that in lines 2–3 we

immediately return the input QCN if it is trivially inconsistent, as it would not make any sense

to continue with the decomposition procedure. Function BCSubgraphs(G) in line 4 returns the

biconnected components of a graph G= (V, E) and has a runtime of O(|E|) (Dechter 2003).

Note that in line 4 we keep only the components of order greater than 2, as any not trivially

inconsistent qualitative constraint network of less than 3 variables is trivially satisfiable (by

definition of a base relation). In what follows, we always consider components of order greater

than 2. Based on algorithm Decomposer, we can obtain an algorithm to increase the performance

of any given state-of-the-art solver that is sound and complete for checking the satisfiability of

a given QCN N defined on a language that has patchwork for satisfiable atomic QCNs; that

algorithm is presented in Algorithm 4. Let us denote any such given state-of-the-art solver by

Solver. Then, Algorithm 4 will use Solver to decide the satisfiability of the QCNs that correspond

to the biconnected components of the constraint graph of N . The enclosure with symbol ‖ for

Solver denotes the fact that Solver can be used in a parallel or serial fashion.

Regarding the MLP, we can have the following result:

Proposition 7 Let N = (V, C) be a satisfiable QCN defined on a language that has patchwork

for satisfiable atomic QCNs, and let {G1, . . . , Gk} be the biconnected components of its constraint

graph G(N ). Then, a base relation b ∈ C(u, v), with u, v ∈ V (Gi), is feasible (resp. unfeasible)

iff there exists (resp. there does not exist) a scenario Si = (Vi, C
′
i) of Ni = (Vi, Ci) such that

C ′i(u, v) = {b}, where Ni is N↓V (Gi), for some i ∈ {1, . . . , k}.
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Proof Since N is satisfiable, by Proposition 6 we know that there exists a solution of Ni and,

hence, a scenario of Ni. In addition, as Gi is a biconnected component of G(N ), any scenario

Si = (Vi, C
′
i) of Ni is the restriction of some scenario S = (V, C ′) of N to Vi, and any scenario

S = (V, C ′) of N is the extension of some scenario Si = (Vi, C
′
i) of Ni to V . As such, the feasibility

of b can be characterized by considering Ni instead of N . 2

Given a satisfiable QCN N = (V, C), Proposition 7 allows one to quickly characterize the

feasibility of a base relation b ∈ C(u, v), with u, v ∈ V (G′), where G′ is a biconnected component

of the constraint graph G(N ). If u, v 6∈ V (G′) for any biconnected component G′ of G(N ), then

b belongs to a constraint that is labeled with the universal relation B and its feasibility can still

be efficiently characterized under certain conditions by a function similar to extractFeasible as

described in (Amaneddine, Condotta, and Sioutis 2013).

Consequently, by Proposition 7 and the fact that IA and RCC-8 have patchwork for satisfiable

atomic QCNs of their relations (Lutz and Milicic 2007), we have the following result:

Corollary 6 Let N = (V, C) be a satisfiable QCN of IA or RCC-8, and let {G1, . . . , Gk} be

the biconnected components of its constraint graph G(N ). Then, a base relation b ∈ C(u, v),

with u, v ∈ V (Gi), is feasible (resp. unfeasible) iff there exists (resp. there does not exist) a

scenario Si = (Vi, C
′
i) of Ni = (Vi, Ci) such that C ′i(u, v) = {b}, where Ni is N↓V (Gi), for some

i ∈ {1, . . . , k}.

Regarding the redundancy problem, we can have the following result:

Proposition 8 Let N = (V, C) be a satisfiable QCN defined on a language that has patchwork

for satisfiable atomic QCNs, and let {G1, . . . , Gk} be the biconnected components of its constraint

graph G(N ). Then, a relation C(u, v), with u, v ∈ V , is non-redundant in N iff (u, v) ∈ E(Gi)

and C(u, v) is non-redundant in Ni = (Vi, Ci), where Ni is N↓V (Gi), for some i ∈ {1, . . . , k}.

Proof Clearly, a relation C(u, v) is redundant in N if (v, v′) 6∈ E(Gi) for any i ∈ {1, . . . , k}, as

it will correspond to the universal relation B, which is by definition redundant. Let us consider

a relation C(u, v) where (u, v) ∈ E(Gi) for some i ∈ {1, . . . , k}. Let N ′ = (V, C ′) be the QCN

defined by C ′(u, v) = B \ C(u, v), C ′(v, u) = B \ (C(u, v))
−1

, and C ′(y, w) = C(y, w) ∀(y, w) ∈
(V × V ) \ {(u, v), (v, u)}. Further, let Ni

′ = (Vi, Ci
′) be the restriction of N ′ to V (Gi). Since

N is satisfiable, N ′ is satisfiable, and by Proposition 6 we know that there exists a solution of

Ni
′ and, hence, a scenario of Ni

′. In addition, as Gi is a biconnected component of G(N ), any

scenario Si = (Vi, C
′′
i ) of Ni

′ is the restriction of some scenario S = (V, C ′′) of N ′ to Vi, and any

scenario S = (V, C ′′) of N ′ is the extension of some scenario Si = (Vi, C
′′
i ) of Ni

′ to V . Finally,

since for any scenario there exists a solution that satisfies all of its base relations, the redundancy

of C(u, v) can be characterized by considering Ni instead of N . 2

Consequently, by Proposition 8 and the fact that IA and RCC-8 have patchwork for satisfiable

atomic QCNs of their relations (Lutz and Milicic 2007), we have the following result:

Corollary 7 Let N = (V, C) be a satisfiable QCN of IA or RCC-8, and let {G1, . . . , Gk} be

the biconnected components of its constraint graph G(N ). Then, a relation C(u, v), with u, v ∈ V ,

is non-redundant in N iff (u, v) ∈ E(Gi) and C(u, v) is non-redundant in Ni = (Vi, Ci), where

Ni is N↓V (Gi), for some i ∈ {1, . . . , k}.

5.1 Dataset

We review the dataset of real RCC-8 network instances that was originally introduced in (Nikolaou

and Koubarakis 2014), and which we describe here as follows:

• nuts: a nomenclature of territorial units.10

10Retrieved from: http://www.linkedopendata.gr/
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• adm1: a network that describes the administrative geography of Great Britain (Goodwin,

Dolbear, and Hart 2008).

• gadm1: a network that describes the German administrative units.10

• gadm2: a network that describes the world’s (global) administrative areas.11

• adm2: a network that describes the Greek administrative geography.10

The aforementioned network instances are tractable and contain at most two base RCC-8 relations

per edge. The characteristics of the constraint graphs of these networks are presented in Table 1.

Table 1 Characteristics of real RCC-8 networks

network # of nodes # of edges avg. degree
nuts 2 236 3 176 2.84
adm1 11 762 44 833 7.62
gadm1 42 750 159 600 7.47
gadm2 276 728 590 443 4.27
adm2 1 733 000 5 236 270 6.04

As it can be seen, the constraint graphs of the networks vary in order, but they are all relatively

sparse. This comes as no surprise, as real world graphs often present a scale-free structure

(Barabasi and Bonabeau 2003), which results in them being sparse (Del Genio, Gross, and Bassler

2011). Thus, we expect these constraint graphs to be loosely connected and yield a high number

of biconnected components. We can view information regarding the biconnected components of

the constraint graphs of our networks in Table 2 (where by max order, median order, and min

order we refer to the maximum, median, and minimum number of vertices, respectively, met

among the biconnected components).

Table 2 Biconnected components of real RCC-8 networks

network # of components max order median order min order
nuts 64 52 8 3
adm1 5 11 666 30 3
gadm1 166 19 864 6 3
gadm2 2 285 2 371 18 3
adm2 2 889 22 808 579 4

The findings are quite impressive, in the sense that the maximum order among the biconnected

components of a constraint graph is significantly smaller than the order of that graph. For

example, the constraint graph of the biggest real RCC-8 network, namely, adm2, has an order

of value 1 733 000, but the maximum order among its biconnected components is only of value

22 808. Note also that, as the median metric suggests, most of the biconnected components of

a graph have an order much closer to the minimum order than the maximum order among the

biconnected components of that graph.

Instances for evaluating the satisfiability checking performance of the reasoners for non-

tractable QCNs, which are of our interest in this paper, were constructed in (Nikolaou and

Koubarakis 2014) with the introduction of NP8 relations (Renz and Nebel 2001) in the networks’

edges. These instances will be denoted by hard-nuts, hard-adm1, and hard-gadm1 in the

evaluation to follow, and are structurally identical to networks nuts, adm1, and gadm1 respectively,

i.e., their constraint graphs have the same characteristics as those presented in Tables 1 and 2.

As (Nikolaou and Koubarakis 2014) suggests, some state-of-the-art reasoners, such as

GQR (Gantner, Westphal, and Wölfl 2008), use a matrix to represent a QCN N = (V, C), which

has a O(|V |2) memory requirement. It would be impossible to store a graph of the order of adm2

in a matrix as we would need ∼ 3TB of memory. Even if memory was not the issue, the time

complexity alone of a path-consistency algorithm would explode, while the backtracking algorithm

that is typically used for tackling non-tractable QCNs and makes use of path-consistency as a

forward checking step, would suffer from an increased search space. Heuristics for the backtracking

algorithm would also have a hard time distinguishing between biconnected components. Consider

11http://gadm.geovocab.org/
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Figure 10 A separable constraint graph with an articulation vertex v

for example a situation where the backtracking algorithm backtracks from an instatiation of

a constraint in a biconnected component to an instantiation of a constraint in a different

biconnected component. Since the constraints belong to different biconnected components, we

have already shown that they are completely unrelated to each other (i.e., satisfying one constraint

does not affect the other in any way); nevertheless, they might still define a huge branch in

the search-tree that is spawned by the backtracking algorithm. Such a situation is depicted in

Figure 10, which presents two QCNs Ni = (Vi, Ci) and Nj = (Vj , Cj) such that Vi ∩ Vj = {v}. Let

us assume that their constraint graphs are biconnected. Then, the constraint graph of Ni ∪Nj

has G(Ni) and G(Nj) as its biconnected components. It is clear that the valuation of constraint

Ci(ui, v) with any of the values r1 or r2 does not affect the satisifiability or unsatisfiability of the

valuation of constraint Cj(v, uj) with any of the values l1, l2, or l3, and vice versa. However, if we

choose not to treat the biconnected components separately, a huge branch might be defined, as

viewed in Figure 10, that could otherwise be entirely avoided. Proposition 6 allows us to treat the

QCNs that correspond to biconnected components completely separately, in a parallel or serial

fashion, and avoid the aforementioned bothersome issues.

5.2 Evaluation

We consider the hard network instances hard-nuts, hard-adm1, and hard-gadm1 from (Nikolaou

and Koubarakis 2014) that comprise NP8 relations (Renz and Nebel 2001) to utilize the whole

reasoning engine of a reasoner. If Solver is the name of a reasoner, Solver+ denotes the use of

Algorithm 4 with that reasoner. The experiments were carried out on a computer with an Intel

Core 2 Quad Q9400 processor with a CPU frequency of 2.66 GHz per core, 8 GB RAM, and

the Precise Pangolin x86 64 OS. GQR (under version 1500) was compiled with gcc/g++ 4.6.3

and Sarissa, Phalanx, and Phalanx5 (Sioutis and Condotta 2014) (all under version 0.2) were run

with PyPy 2.4.0 12, which fully implements Python 2.7.8. For all reasoners, the best performing

heuristics were enabled. (Obviously, we did not consider the implementation of (Nikolaou and

Koubarakis 2014) in our evaluation as it is not sound.) We chose to reason in a serial fashion, from

smaller to bigger QCN, so as to stress how much more path-consistency and the backtracking

algorithm that utilizes it along with the heuristics in each reasoner benefit from reasoning with

the smaller biconnected QCNs than reasoning with the initial large and loosely connected QCN,

when both approaches are offered the same computational power. Thus, only one CPU core was

used in our experiments.

12http://pypy.org
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Table 3 Performance comparison based on elapsed time

solver GQR GQR+ Pha. Pha.+ Sar. Sar.+ Pha.5 Pha.5+
hard-nuts 2.0s 0.1s 4.0s 0.6s 0.8s 0.6s 0.9s 0.6s
hard-adm1 4.7E3s 5.2E3s 3.4E3s 3.7E3s 161.5s 137.7s 98.3s 97.4s
hard-gadm1 1.4E4s 1.2s 1.0E5s 3.5s 2.0E3s 3.4s 1.1E3s 3.0s

The results are shown in Table 3 and make clear that our simple decomposition scheme

aids the performance of each reasoner substantially, with the more apparent case being that

of hard-gadm1, which is unsatisfiable. Networks hard-nuts and hard-adm1 are satisfiable. In

particular, GQR decides gadm1 in ∼ 4 hours, while GQR+ in 1.2 seconds, and similar results

are obtained for the other reasoners too. When an inconsistency is detected in a QCN n that

corresponds to some biconnected component of the constraint graph of an input QCN N , each

reasoner backtracks only within the search space defined by n, and considers a very small search-

tree to either verify or dispute that inconsistency with respect to the search-tree that would have

been obtained by the input QCN N . Obviously, the time obtained for reasoner Solver+ is the

time that it took it to serially reason with every QCN n, until it reached an unsatisfiable QCN

(thus, assuring that the input QCN N is also unsatisfiable by Corollary 5).

It is worth commenting on the performance of the reasoners with respect to network

hard-adm1. Reasoners Sarissa+ and Phalanx5+ present a performance that is slightly better

than that of reasoners Sarissa and Phalanx5 respectively. On the other hand, reasoners GQR+

and Phalanx+ present a performance that is slightly worse than that of reasoners GQR and

Phalanx respectively. This is due to the fact that the maximum order among the biconnected

components of the constraint graph of adm1 is very close to the order of the entire graph itself

(see Table 2). Thus, in such cases, the use of Algorithm 4 may not lead to drastically improved

performance, while sometimes due to the randomness of the heuristics in a reasoner, even slightly

worse performance may be observed, as in this particular case.

Finally, we note that the results presented in Table 3 do not take into account the time

needed for decomposing the networks with Algorithm 4, but only the time needed for performing

satisfiability checks on the networks. However, the time needed for decomposing hard-nuts,

hard-adm1, and hard-gadm1 was negligible, and does not change the results qualitatively. In

particular, a simple Python script that makes use of the networkx13 library was able to decompose

hard-nuts, hard-adm1, and hard-gadm1 in 0.2, 1.4, and 7.6 seconds respectively.

6 Related Work

The utility of taking advantage of the structure of qualitative constraint networks has already been

addressed in the context of heuristics for the path-consistency algorithms in (Beek and Manchak

1996; Renz 2002b). In particular, the heuristics proposed in (Renz 2002b) target the denser parts

of the underlying constraint graph of a given qualitative constraint network, i.e., the qualitative

relations that consist of few base relations, as an effort to propagate constraints more efficiently

and also possibly resolve any local inconsistencies faster. Pruning unfeasible base relations off a

qualitative relation that already comprises very few base relations can almost immediately unveil

an inconsistency. However, these heuristics always consider a complete underlying constraint

graph of a given network. As such, they fail to completely isolate parts of the underlying

constraint graph of a given qualitative constraint network that are irrelevant to the process

of satisfiability checking; such parts being universal relations that do not belong to the clusters of

a tree decomposition corresponding to the constraint graph of the qualitative constraint network

at hand. In this paper, we showed that it is possible to omit satisfiability checks across clusters of

a tree decomposition corresponding to the constraint graph of a qualitative constraint network.

As noted in our introduction, a qualitative constraint network is most efficiently modeled as

an infinite-domain variant of a constraint satisfaction problem through the use of a relation

algebra (Ladkin and Maddux 1994), which is also the approach we followed in our work.

13https://networkx.github.io/
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However, a qualitative constraint network can also be encoded as a finite constraint satisfaction

problem instance (Renz and Nebel 2001; Brand 2004; Condotta et al. 2006). In particular,

given a qualitative constraint network (V, C), where |V |= n, we can obtain a constraint

satisfaction problem instance as follows. Let X denote the set of variables containing a variable

xij for each pair of variables vi, vj ∈ V with 1≤ i < j ≤ n. Then, our instance has the form

(X, B, DCon ∪ TCon), where DCon is the set of domain constraints {(xij , Cij) | 1≤ i < j ≤ n}
and TCon the set of ternary constraints {((xij , xik, xkj), R�) | 1≤ i < j < k ≤ n} with R� =

{(b, b′, b′′) ∈ B3 | b ∈ b′ � b′′}. Namely, DCon restricts the values of a variable xij to the base

relations of the corresponding qualitative constraint Cij and TCon encodes all the consistent

paths of length 2 in the network. The resulting finite network has n(n−1)
2 variables and

(
n
3

)
ternary constraints. A solution of this finite instance corresponds to a path-consistent atomic

refinement of a given qualitative constraint network, and vice versa (Condotta et al. 2006). The

main disadvantage of this approach is that we are not able to make use of maximal tractable

subclasses of relations. This can seriously impact the performance of satisfiability checking for

calculi that heavily rely upon those subclasses, such as RCC-8 and IA. However, for large-

sized qualitative calculi (viz., comprising hundreds of base relations) for which no tractable

subclasses are known, a finite constraint satisfaction problem encoding can provide a considerable

performance gain (Westphal and Wölfl 2009).

In light of the strong relation that exists between qualitative and “traditional” constraint

programming, it is worth mentioning some works in the latter paradigm that exploit the structure

of constraint graphs in a similar manner to what we presented in our paper. The interested

reader may review the cited works and obtain a deeper understanding on the analogy that

exists between structural characteristics of qualitative constraint networks and finite constraint

satisfaction problem instances. What is more important, the cited works may drive future research

by enabling the reader to identify theoretical properties in the context of qualitative spatial and

temporal reasoning, that can be used to adopt certain techniques for exploiting the structure

of constraint graphs that exist in constraint programming. In (Walsh 2001), Walsh measures

the impact that the structure of a constraint graph can have on the performance of solving

the graph coloring problem, which is the problem of coloring the vertices of a graph in such a

way that no two adjacent vertices share the same color. In (Baget and Tognetti 2001), Baget

et al. propose a backtracking algorithm for solving constraint satisfaction problem instances

that exploits the biconnected components of a given constraint graph to reduce search space,

permanently removing values and compiling partial solutions during exploitation. In (Dechter

and Pearl 1989), Dechter et al. propose a constraint graph restructuring technique, based on tree

decompositions, that guarantees that a large variety of queries could be answered swiftly either

by sequential backtrack-free procedures, or by distributed constraint propagation methods. Based

on the work of (Dechter and Pearl 1989), Jégou et al. in (Jégou and Terrioux 2003) propose a

framework for solving constraint satisfaction problem instances that relies both on backtracking

techniques and on the notion of tree decomposition of the constraint graphs. Notably, this mixed

approach has been implemented and used successfully for practical constraint satisfaction problem

solving (Jégou and Terrioux 2003). Jégou et al. in (Jégou, Ndiaye, and Terrioux 2005) study

several methods for computing a rough optimal tree decomposition and assess their relevance

for solving constraint satisfaction problem instances; the same authors also proposed dynamic

heuristics for efficient backtrack search on tree decompositions of constraint graphs in (Jégou,

Ndiaye, and Terrioux 2006; Jégou, Ndiaye, and Terrioux 2007). Recently, in (Jégou and Terrioux

2014a; Jégou and Terrioux 2014b) Jégou et al. introduced and exploited a new graph parameter,

called bag-connected tree-width, which considers tree decompositions for which each cluster induces

a connected graph. It is experimentally shown in (Jégou and Terrioux 2014b) that such bag-

connected tree decompositions significantly improve the solving of constraint satisfaction problem

instances by decomposition methods. Finally, a presentation of the major structural constraint

network decomposition methods discussed here is given in (Gottlob, Leone, and Scarcello 2000).



REFERENCES 23

7 Discussion

To conclude, we surveyed the use and effect of decomposition-based techniques in qualitative

constraint-based reasoning and showed that the decomposition-based approach presented in

(Nikolaou and Koubarakis 2014) for checking the satisfiability of QCNs of RCC-8 lacks soundness,

as the notion of a partitioning graph defined in that work is not coherent with the use of patchwork

upon which it solely relies. Further, we showed how that notion is beyond repair, unless it is

reformulated to define a tree decomposition, implicitly or explicitly, and discussed the impact of

these observations on the performance of the offered implementation in (Nikolaou and Koubarakis

2014), which was already found to be poor in (Sioutis 2014).

We think that future efforts regarding decomposition-based approaches utilizing parallelism,

such as the approach attempted in (Nikolaou and Koubarakis 2014), should rely on chordal graphs

(tree decompositions into cliques), which can both be constructed and also yield a natural tree

decomposition of their cliques in linear time (Diestel 2012). The cliques can then be collected

at no extra cost and parallelism might be efficiently utilized. It is an issue that looks promising

and calls for further research. Towards that direction, we offered an approach that relies on a

particular tree decomposition that is based on the biconnected components of the constraint

graph of a given large QCN, and showed that it allows for cost-free utilization of parallelism for

a qualitative constraint language that has patchwork for satisfiable atomic QCNs.
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