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Abstract—In this short challenge paper, we argue for the need
of having robust Qualitative Spatio-Temporal Reasoning (QSTR),
as a means to develop hybrid AI systems involving computations
with spatio-temporal information. In short, QSTR is a Symbolic
AI framework for representing and reasoning about spatial and
temporal information via the use of disjunctive natural relations,
e.g., “Task A is scheduled after or during Task C”, and robustness
entails a notion of resistance to the possible future alterations of
a spatio-temporal configuration. So far, robustness for QSTR has
been defined in the literature in a very rigid manner, in that a
configuration may either resist a perturbation or not. Here, we
propose an alternative formulation based on probabilities, that
should allow a spatio-temporal configuration to also be pliable
and adapt to enforced changes. We close the paper by giving
some examples of how robust QSTR can be the backbone of
hybrid AI systems, emphasizing on abductive learning and AI
planning in particular.

Index Terms—Qualitative constraints, spatial and temporal
reasoning, robustness, hybrid AI

I. INTRODUCTION

Qualitative Spatial and Temporal Reasoning, QSTR for
short, is a major area of research in AI that deals with the fun-
damental cognitive concepts of space and time in an abstract,
human-like manner, ranging from theoretical computer science
and logic to practical algorithms and applications [1]. In brief,
QSTR simplifies complex mathematical theories that revolve
around spatial and temporal entities to manageable qualitative
constraint languages (calculi), which can in turn give rise to
interpretable spatio-temporal representations, typically viewed
as constraint networks of disjunctions of atoms like inside,
precedes, or north of [1]; see Figure 1 for an illustration
of some standard QSTR terminology. Thus, QSTR forms a
concise paradigm for dealing with entities pertaining to space
and time with the potential to boost research in a plethora
of domains such as dynamic GIS [2], cognitive robotics [3],
deep learning [4], qualitative model generation from video [5],
visual sensemaking [6], data mining [7], and qualitative case-
based reasoning and learning [8]. The interested reader can
obtain a more descriptive review of the emergent applica-
tions, the trends, and the possible future directions of QSTR

This work was supported by the National Natural Science Foundation
of China (61806170), the Humanities and Social Sciences Fund of Ministry
of Education (18XJC72040001), and the National Key Research and Devel-
opment Program of China (2019YFB1706104).

fork plate knife

tableon on
on

right of left of

Task A Task C

Task B

?

precedes ∨ follows precedes

Fig. 1: A qualitative description/interpretation of a concrete
spatial scene, and a simplified qualitative constraint network
involving 3 temporal tasks; ? stands for complete uncertainty

in [9] and [10]. In addition, qualitative spatial and temporal
calculi are surveyed in detail in [11]; the related fundamental
reasoning tasks of such calculi, such as constraint network
satisfiability checking, are typically NP-hard [11].

As a first illustration, Allen proposed Interval Algebra
in [12] as a constraint language for representing and reasoning
about time in a qualitative manner. Allen’s motivation at
the time was to have a framework in the context of natural
language processing to reliably and efficiently enough deal
with the occurring temporal information in everyday commu-
nication; thus, he considered the qualitative relations between
time intervals (e.g., before). In particular, Interval Algebra uses
intervals on the real line to represent entities corresponding
to events, actions, or tasks, and also encodes the possible
relations between these intervals. Interval Algebra is consid-
ered today as one of the most prominent and well-known
qualitative constraint languages, by virtue of its extensive use
in various and diverse applications. Typical examples of such
applications involve planning [13], temporal databases [14],
[15], natural language processing [16], molecular biology (e.g.,
arranging DNA fragments along a linear chain involves certain
temporal-like problems) [17], workflow [18], and intensive
care medicine [19].

As an additional illustration, Randell et al. in [20] proposed
the Region Connection Calculus (RCC) for qualitatively repre-
sening and reasoning about space in a mereotopological sense.
Specifically, this theory considers regions in any arbitrary
topological space, as well as the possible relations among such
regions, and is grounded on the primitive relation of connec-
tion. For example, the base relation partially overlaps suggests



that part of some region x connects with part of some other
region y. Two derived calculi of RCC, namely, RCC-8 and
RCC-5 (a simplification of RCC-8 where region boundaries
are not accounted for), have been used in various real-life ap-
plications. In particular, in [21] RCC-5 has been used in smart
cars, in [22] RCC-8 has been used in autonomous unmanned
aerial vehicles (or, simply, drones), and in [23] a discrete
domain counterpart of RCC-8 (called discrete mereotopology)
has been used in medical image processing. Other typical
applications involve mobile robot navigation [24], natural
language processing [25], and computer vision [26].

Current QSTR tools are not suitable for dynamic settings

With regard to algorithms for tackling fundamental rea-
soning tasks, current work revolves around methods that are
primarily static in nature, i.e., they operate on fixed input
data [27]–[32]; see also [33] and cited works therein. With
respect to decomposability and tractability properties that can
be exploited to boost the reasoning efficiency and enable par-
allelization, to the best of our knowledge there is no practical
published research aside from the works utilizing tree decom-
positions for qualitative constraint networks [31], [34] (notions
such as k-consistency can be leveraged theoretically [35],
but are hardly practical or suitable for applications)—see
also [36] and cited works therein. However, this approach
is almost fully graph-based and, hence, does not adequately
consider the semantics of the relations of a network dur-
ing the decomposition phase. In relation to this research
direction, Sioutis and Janhunen recently suggested to identify
and make use of certain structural features in qualitative
constraint networks (viz., backdoors and backbones) [37], as a
means to define collaborative frameworks involving SAT, CP,
and native reasoning tools and inspire novel decomposition
and parallelization techniques; as a result, adaptive constraint
propagators having a better insight than the state of the art
into the particulars of real-world datasets could be developed.
In addition, the authors recently led a preliminary work on
a novel proactive approach that introduced a notion of resis-
tance (called robustness in that work) to the possible future
alterations of a spatio-temporal configuration [38], which is
an important concept in the context of fluctuant and dynamic
situations, such as real-life settings. This work allows for
establishing frameworks that will be most likely to withstand
perturbation (robustness) and that can be easily repaired when
they did not suceed in doing so (stability/flexibility). Notably,
this work also gave rise to a recent approach where certain
spatio-temporal relations are preferred to others when trying
to refine a spatio-temporal configuration, e.g., refining the
relation between Tasks A and B to precedes in the network
of Figure 1, depending on the count of local satisfiable atomic
configurations that the relations are involved with [39].

Contribution

In this paper, we build upon the aforementioned preliminary
work about robustness, and present a roadmap on how it can be
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Fig. 2: A visualization of the 13 base relations b of IA, where
each base relation relates two potential intervals x and y as in
x b y; here, bi denotes the converse of b (viz., b−1 formally)

further extended with probabilities, and aid in the development
of hybrid AI systems as a consequence, i.e., systems that can
combine the strengths of machine learning and symbolic AI
techniques.

II. PRELIMINARIES

A qualitative spatial or temporal constraint language is
based on a finite set B of binary relations, called base
relations, that are jointly exhaustive and pairwise disjoint and
defined over an infinite domain D (e.g., the real line or some
topological space) [1]. Given a qualitative calculus over a
domain D, each one of its base relations, alone, represents
the definite knowledge between any two of the entities it
may constrain. A union of base relations specifies indefinite
knowledge, and such knowledge is represented by the set
containing the involved base relations; thus, 2B represents the
total set of possible relations. Further, the set B is closed
under the converse operation (−1) and contains the identity
relation Id, and its powerset, viz., 2B, employs the union
and intersection set-theoretic operations, the special weak
composition operation (�) [1], and the converse operation. For
all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}. The weak

composition of two base relations b, b′ ∈ B is characterized
as the most restrictive, i.e., smallest, relation r ∈ 2B that
includes b ◦ b′, i.e., b � b′={b′′ ∈ B | (b ◦ b′)∩b′′ 6= ∅},
where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈
b ∧ (z, y) ∈ b′} is the usual composition of b and b′. Finally,
for all r, r′ ∈ 2B, we have that r�r′ =

⋃
{b�b′ | b ∈ r, b′ ∈ r′}.

As an illustration, let us revisit the Interval Alge-
bra (IA) qualitative temporal constraint language, proposed by
Allen [12]. Temporal entities in IA are intervals on the real
line, and its set of base relations B = {eq, p, m, o, s, d, f ,
pi, mi, oi, si, di, fi} encodes knowledge about the temporal
relations between such intervals, as described in Figure 2.

The challenge of representing and reasoning about qualita-
tive information can be facilitated by a qualitative constraint
network (QCN), for which we recall the following definition:

Definition 1. A QCN is a tuple (V,C) where:
• V = {v1, . . . , vn} is a finite set of variables over some

infinite domain D (e.g., space- or time-based);
• and C is a mapping C : V × V → 2B associating a

relation (set of base relations) with each pair of variables.
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Fig. 3: Illustrative examples of QCN terminology using IA;
here, C(v, v) = {Id}, and (C(v′, v))−1 = C(v, v′) ∀v, v′ ∈ V

An example of a QCN appears in Figure 3a; loops or
converse relations do not appear in the figure for clarity.

Definition 2. Let N = (V,C) be a QCN, then:
• a solution of N is a mapping σ : V → D such that
∀(v, v′) ∈ V ×V , ∃b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈
b; and N is satisfiable iff it yields a solution;

• a refinement N ′ of N is a QCN (V,C ′) such that
C ′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V ;

• N is atomic iff ∀v, v′ ∈ V , |C(v, v′)| = 1;
• a scenario S of N is a satisfiable atomic refinement of
N , should N be satisfiable (see Figure 3b);

• the size of N , denoted by |N |, is |{(v, v′) | v, v′ ∈ V }|.

For convenience, given a QCN N = (V,C), we can use
N [v, v′] to represent relation C(v, v′).

III. ROBUSTNESS, STABILITY, AND FLEXIBILITY
PROPERTIES IN QSTR

As noted in Section I, the authors recently led a preliminary
work on a novel proactive approach that introduces a notion
of resistance (called robustness in that work) to the possible
future alterations of a spatio-temporal configuration, and in
particular a spatio-temporal scenario [38]. Such a concept of
resistance can be important in the context of fluctuant and
dynamic situations, such as real-life settings. Let us revisited
the simplified QCN of Figure 1. Given such a QCN, we are
looking into the problem of obtaining a satisfiable scenario of
it that is more resistant to perturbation than any other scenario,
or, equivalently, a satisfiable scenario that is more likely than
any other scenario to retain its validity (satisfiability) after the
perturbation occurs; we call such a scenario a robust scenario.
Here, choosing Task A to precede Task B forces us to have
Task A precede Task C too. However, if we choose Task A
to follow Task B instead, then we keep all the possibilities
between Tasks A and C available (e.g., precedes, overlaps,
during, or follows). Consequently, regardless of the change that
may (or may not) occur in the relation between Tasks A and C,
placing Task A after Task B yields a satisfiable scenario
that will be able to maintain its satisfiability against this
possible pertubation and, hence, that is more robust compared
to the other ones in this case. In sum, a robust scenario can
be considered as one that is best in terms of perturbation
tolerance, and as a proactive measure limiting to the extent
possible any need for successive repairs.

A. Theoretical study of robustness and its related properties

Robustness is a concept in problem solving that has been
a topic of research arguably ever since the first various tech-
niques for problem solving started to appear. Indeed, as soon
as there were different solutions to some problem, it became
important to have a way to grade/rank those solutions based on
some (often robustness-related) criteria; see for example [40],
and [41] and cited works therein. Robustness has been studied
quite thoroughly in traditional constraint programming, where
also other related notios such as stability and flexibility were
introduced [42]–[44]. These related notions are well worth
exploring in qualitative spatial and temporal reasoning too.
In brief, a stable solution is one that can be repaired with
a minimum number of corrections in case a perturbation
invalidates it, and a flexible solution is a more relaxed version
of a stable one, where the number of repairs need not be
minimal but under some fixed (subjectively-defined) threshold.
We remind the reader again that, in contrast to a stable or a
flexible solution, a robust solution is simply more likely to
remain valid after a perturbation occurs; the difference is fine,
but it should be clear nonetheless. In the context of CSPs
with infinite domains, viz., QCNs, and in particular in the
introductory work of [38], a notion of robustness for QCNs
was defined and it was left as an open question whether the
problem of verifying a robust scenario is in NP (given of
course that the satisfiability problem in the considered calculus
is NP-complete). As a consequence, no interesting tractable
cases were identified (should they exist). Furthermore, that
notion of robustness assumed an equal probability among all
possible perturbations, which may not be realistic enough in
real-life settings, and the related properties of stability and
flexibility were not introduced and studied at all. Although
we will draw inspiration from the aforementioned works in
traditional constraint programming to obtain theoretical results
and generalized frameworks for robustness and its related
properties in the context of QSTR, it should be mentioned
that the methods that exist for CSPs are not readily applicable
to QCNs, as the latter involve infinite domains and have a
distinct set of exploitable properties [11]. (In support of the
aforementioned statement, see also [45] for an overview and
evaluation of different paradigms for solving QCNs.)

B. Practical tools for obtaining robust scenarios

In the work of [38] an implementation of a novel algorithm
was proposed that, although very useful in assessing the
differences that appear in the scenario-space of a given QCN
in a proof-of-concept setting, is far from being scalable, as
it can only handle up to few tens of variables. Therefore,
here we argue for implementing tools that will exploit the
theoretical results of the previous study in order to achieve
scalability. Furthermore, and in line with the proposed the-
oretical study, we argue that these tools should incorporate
different probabilities for different kinds of perturbation, and
should be able to provide both exact and approximate solu-
tions to a given problem (depending on the application, an
approximate solution—which can be computed much faster



than an exact one—might already be sufficient). Regarding
the modeling of perturbations themselves, we suggest looking
into the concept of generalized neighbourhood graphs [46],
which allow certain perturbations to be modeled in a more
dynamic setting; of course, an extension with probabilities will
be required here too.

C. Robust QSTR as the backbone of hybrid AI systems

In this section we describe how robust QSTR can be the
backbone of hybrid AI systems, presenting some examples in
the context of abductive learning and AI planning specifically.

Abductive learning: In [9] the authors make the case for
neurally-enhanced QSTR, by proposing to use probabilistic
values to construct a bidirectional feedback loop between
the machine learning model and the symbolic framework,
referred to in the recent literature as abductive learning [47,
Figure 1]; see also [48]. Specifically, they propose to annotate
the variables in a QCN with the probabilistic values produced
by the ML model, and assign probabilistic values to the
constraints of the QCN too. A neurally-enhanced symbolic
relation could then be as follows (%s denote likelihood):

X(90% yolk) is inside(40% true) or overlaps(60% true) Y (95% egg).

In a sense, logic is used to compose (partial) knowledge
learned by machine learning methods, and this learned knowl-
edge is allowed to influence that logical composition too. To
this end, it is important to establish probabilistic robustness
measures relating to QSTR frameworks, and also construct
adaptive and dynamic algorithms for verifying neural network-
based components at runtime. We take the next step here and
propose such a measure as follows:

Definition 3. (Robustness Measure) Given a QCN N =
(V,C), an atomic refinement N ′ of N , and the probabil-
ity pij(N ′[vi, vj ]) of a relation N ′[vi, vj ] appearing in any
scenario of N , the robustness measure of N ′, denoted by
robustness(N ′), is defined to be:

robustness(N ′) =

∑
vi,vj∈V

pij(N ′[vi, vj ])

|N ′|
.

For example, given an atomic refinement of some QCN
with a robustness measure of 0.9, this would mean that on
average each of its relations would have 90% chance to
appear in a given scenario of that QCN, out of the set of all
scenarios of that QCN. In that sense, it can be also stated
that the aforementioned atomic refinement is around 90%
compatible with the scenario space of the QCN. As noted
earlier, the probability pij(N ′[vi, vj ]) can be approximated by
machine learning techniques; hence, we think that this scheme
can adequately support abductive learning once implemented.
Clearly, based on the definition above, the most robust atomic
refinement (where the probabilities are based on the output
of a classifier for example) might not even be satisfiable.
Therefore, we also argue for developing probability-based
methods towards maximizing satisfiability (or, in other words,

minimizing inconsistency), either via belief revision or tradi-
tional constraint propagation frameworks.

AI planning: To further detail how robustness and dynamic
reasoning can play a role in hybdid AI systems, let us consider
the following simplified rule in the context of a system that
involves AI planning, and in particular train schedulling:

(Train X {uses} (Track A⊕ Track B))∧
(Train Y {uses} Track B)∧

(departInt(Train X) {p,m,o} departInt(Train Y )).

It is specified that Train X , which uses either Track A or B,
has a departure slot that may overlap (o) that of Train Y , which
uses Track B; it is assumed here that all outcomes are equally
probable. Naturally, some safety properties must hold too, like
the following one:

�(¬blocked(Track A) ∧ ¬blocked(Track B)).

From a resource allocation perspective, it may be preferred to
only use Track B, and from a collision avoidance perspective,
it may be preferred to use both tracks by allocating Track A
to Train X . In any case, a plan can be devised based on
these preferences. However, one day new information becomes
available via an ML system that predicts that Track A will be
subject to buckling due to a heatwave [49]:

♦blocked(Track A).

Clearly, we now need to take this new information into account
and revise our perceptions of robustness pertaining to resource
allocation and collision avoidance, as well as update our
original configuration. Although we have used here a simple
example involving linear temporal logic for demonstrative
purposes, more expressive temporal logics can be considered,
like metric temporal logic (see for example [50]), and more
complex plans can be envisioned too. A related discussion on
robust planning appears in [51].

IV. CONCLUSION

In this short challenge paper, we argued for the need to have
robust Qualitative Spatio-Temporal Reasoning (QSTR), as the
backbone of hybrid AI systems involving also computations
with spatio-temporal information. QSTR is a well-established
Symbolic AI framework for representing and reasoning about
spatial and temporal information via the use of disjunctive
natural relations, e.g., “Region X is inside or overlaps Re-
gion Y”. Here, robustness entails a notion of resistance to the
possible future alterations of a spatio-temporal configuration.
In this paper, we propose a formulation of robustness based on
probabilities, that should allow a spatio-temporal configuration
to also be pliable and adapt to enforced changes, and gave
some examples of how robust QSTR can be the backbone of
hybrid AI systems, emphasizing on abductive learning and AI
planning specifically. On the one hand, our paper is meant
to pose some challenges to the scientific community, and the
QSTR community in particular, that would allow QSTR to be
better integrated into hybrid AI systems; on the other hand, it
is also meant to inspire discussions and feedback.
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