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Abstract
We introduce and study a notion of robustness in
Qualitative Constraint Networks (QCNs), which
are typically used to represent and reason about ab-
stract spatial and temporal information. In particu-
lar, given a QCN, we are interested in obtaining a
robust qualitative solution, or, a robust scenario of
it, which is a satisfiable scenario that has a higher
perturbation tolerance than any other, or, in other
words, a satisfiable scenario that has more chances
than any other to remain valid after it is altered.
This challenging problem requires to consider the
entire set of satisfiable scenarios of a QCN, whose
size is usually exponential in the number of con-
straints of that QCN; however, we present a first
algorithm that is able to compute a robust scenario
of a QCN using linear space in the number of con-
straints. Preliminary results with a dataset from the
job-shop scheduling domain, and a standard one,
show the interest of our approach and highlight the
fact that not all solutions are created equal.

1 Introduction
Qualitative Spatial and Temporal Reasoning (QSTR) is a ma-
jor field of study in AI, and in particular in KR&R, that deals
with the fundamental cognitive concepts of space and time
in an abstract manner, via simple qualitative constraint lan-
guages [Ligozat, 2013; Dylla et al., 2017]. For instance, in
natural language one uses qualitative expressions such as in-
side, before, and north of to spatially or temporally relate
one object with another object or oneself, without resort-
ing to providing quantitative information about these enti-
ties. Thus, QSTR provides a concise framework for rather
inexpensive spatio-temporal reasoning and, hence, further
boosts research to a plethora of application areas and do-
mains, such as cognitive robotics [Dylla and Wallgrün, 2007],
deep learning [Krishnaswamy et al., 2019], ambient intel-
ligence [Bhatt et al., 2009], visual explanation [Suchan et
al., 2018] and sensemaking [Suchan et al., 2019], seman-
tic question-answering [Suchan and Bhatt, 2016], qualitative
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Figure 1: A QCN in simplified form, ? denotes all possibilities

simulation [Cui et al., 1992], and spatio-temporal data min-
ing [Moskovitch and Shahar, 2015; Kostakis and Papapetrou,
2017; Kostakis et al., 2017].

Qualitative spatial or temporal information can be modeled
as a Qualitative Constraint Network (QCN), which is defined
as a network where the vertices correspond to spatial or tem-
poral entities, and the arcs are labeled with qualitative spatial
or temporal relations respectively. For instance x ≤ y can
be a temporal QCN over Z. Given a QCN N , the literature
is particularly interested in its satisfiability problem, which is
the problem of deciding if there exists a spatial or temporal in-
terpretation of the variables ofN that satisfies its constraints,
such an interpretation being called a solution of N . For in-
stance, x = 0∧y = 1 is one of the (infinitely many) solutions
of the aforementioned QCN, and x < y is the corresponding
qualitative solution (satisfiable scenario) that concisely rep-
resents all the cases where x is assigned a lesser value than
y. In general, for many widely adopted qualitative calculi the
satisfiability problem is NP-complete [Dylla et al., 2013].
Motivation Let us consider the QCN of Figure 1, which,
for the sake of our example, encodes the following schedul-
ing problem: A factory produces a product that requires three
tasks A, B, and C to be performed. Task B must be done be-
fore Task C, and Task A should take place either before or
after B. As there might be unpredictable incidents concern-
ing resource availability (e.g., power outage), how should the
factory schedule production so that it may be least disturbed?
In this case, if we choose the atom before as the preferred
relation between Task A and Task B, then the only possible
relation between Task A and Task C is before. However, if we
place Task A after Task B, then we maintain the whole range
of possibilities between Task A and Task C (e.g., before, dur-
ing, after, or equals). In that way, whatever the change in the
relation between Task A and Task C, any satisfiable scenario
that places Task A after Task B, being more robust in com-
parison, will be able to maintain its satisfiability. In a sense, a



robust scenario can be viewed as a satisfiable scenario of bet-
ter quality than the rest, and as a proactive measure that limits
as much as possible the need for successive repairs. Thus, it is
an important notion in the context of uncertain and dynamic
environments, such as real-life configurations.
Related work Robustness in the context of problem solv-
ing can probably be traced back to the introduction of search
techniques for problem solving itself, as ever since there were
ways to obtain solutions for a given problem, there was also
a need to be able to differentiate between those solutions
on some (usually robustness-related) basis; see for exam-
ple [Ginsberg et al., 1998], and [Verfaillie and Jussien, 2005]
and the references therein. Robustness has been studied quite
extensively in the field of traditional constraint programming
over the past years [Climent, 2015; Climent et al., 2014;
Climent et al., 2010; Barber and Salido, 2015]. We note that
in the aforementioned works notions related to robustness,
such as stability, are studied as well, but these go beyond
the scope of this paper. Briefly put, a solution is stable, if
in the event of a change that invalidates it, it can be repaired
with a minimum number of revisions, whereas a robust so-
lution is more likely to remain valid after the change occurs;
the distinction is subtle, but clear. To the best of our knowl-
edge, robustness has not been studied at all in the context of
infinite-domain CSPs, i.e., QCNs. Indeed, since a QCN has
infinitely many solutions, as it is defined over an infinite do-
main such as space or time, comparing one solution against
all others is an impossible task. Therefore, it is necessary to
operate on a higher, symbolic, level and focus on qualitative
solutions, i.e., satisfiable scenarios, instead. This suggests
that the techniques that are used for CSPs cannot be readily
applied to QCNs. (In support of the aforementioned state-
ment, see also [Westphal and Wölfl, 2009] for a comparison
of various techniques for tackling QCNs.)
Contributions In this paper, (i) we introduce and study a
notion of robustness in QCNs, and formally define the robust-
ness problem and a robust scenario of a QCN, (ii) we present
a first algorithm that is able to compute a robust scenario of
a QCN using linear space in the number of constraints of that
QCN, and that is modular in the sense that any state-of-the-art
tool that is able to enumerate/generate satisfiable scenarios of
a QCN can be employed during its execution, and (iii) we
make a preliminary experimentation with a dataset from the
job-shop scheduling domain, and a standard one, to assess the
differences that exist between the scenarios of a given QCN.

2 Preliminaries
A binary qualitative constraint language is based on a finite
set B of jointly exhaustive and pairwise disjoint relations,
called the set of base relations (atoms), that is defined over an
infinite domain D [Ligozat and Renz, 2004]. These base rela-
tions represent definite knowledge between two entities with
respect to the level of granularity provided by the domain D;
indefinite knowledge can be specified by a union of possi-
ble base relations, and is represented by the set containing
them. The set B contains the identity relation Id, and is closed
under the converse operation (−1). The entire set of rela-
tions 2B is equipped with the set-theoretic operations of union
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Figure 2: Examples of QCN terminology using Interval Algebra;
symbols p, e, m, o, d, s, and f correspond to the base relations pre-
cedes, equals, meets, overlaps, during, starts, and finishes respec-
tively, with ·i denoting the converse of ·

and intersection, the converse operation, and the weak com-
position operation denoted by � [Ligozat and Renz, 2004].
The weak composition (�) of two base relations b, b′ ∈ B is
the smallest relation r ∈ 2B that includes b ◦ b′; formally,
b � b′={b′′ ∈ B : b′′∩(b ◦ b′) 6= ∅}, where b ◦ b′={(x, y) ∈
D × D : ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′}. Finally,
for all r ∈ 2B, r−1 =

⋃
{b−1 : b ∈ r}, and for all r, r′ ∈ 2B,

r � r′ =
⋃
{b � b′ : b ∈ r, b′ ∈ r′}.

As an illustration, consider the well known qualitative tem-
poral constraint language of Interval Algebra [Allen, 1983].
Its domain is defined to be the set of intervals on Q, i.e., D
= {x = (x−, x+) ∈ Q × Q : x− < x+}. Then, each base
relation can be defined by appropriately constraining the end-
points of two intervals, which yields a total of 13 base rela-
tions comprising the set B = {e, p, pi, m, mi, o, oi, s, si, d,
di, f , fi}, as detailed in Figure 2. For example, d, viz., dur-
ing, is defined as d = {(x, y) ∈ D× D : x− > y− and x+ <
y+}. The identity relation Id of Interval Algebra is e, and its
converse, i.e., e−1, is defined to be again e.

The interested reader may find a detailed survey of quali-
tative spatial and temporal calculi in [Dylla et al., 2017].

The problem of representing and reasoning about qualita-
tive spatial or temporal information can be tackled (among
other ways) via the use of a Qualitative Constraint Network,
defined in the following manner:

Definition 1. A qualitative constraint network (QCN) is a
tuple (V,C) where:
• V = {v1, . . . , vn} is a non-empty finite set of variables,

each representing an entity of an infinite domain D;
• and C is a mapping C : V × V → 2B such that
C(v, v) = {Id} for all v ∈ V andC(v, v′) = C(v′, v)−1

for all v, v′ ∈ V .

An example of a QCN is shown in Figure 2a; for clar-
ity, neither converse relations nor Id loops are mentioned or
shown in the figure, but they are part of any QCN.

Definition 2. Let N = (V,C) be a QCN, then:
• a solution of N is a mapping σ : V → D such that
∀v, v′ ∈ V , ∃b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b;
• N is satisfiable iff it admits a solution;
• N is trivially inconsistent, denoted by ∅ ∈ N , iff
∃v, v′ ∈ V such that C(v, v′) = ∅;
• N is the empty QCN on V , denoted by ⊥V , iff
C(v, v′) = ∅ for all v, v′ ∈ V such that v 6= v′;



• a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN
(V,C ′) such that C ′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V ;
• N is atomic iff ∀v, v′ ∈ V , C(v, v′) = {b} with b ∈ B;
• a scenario S of N is an atomic sub-QCN of N ;
• the size of N , denoted by |N |, is |{(v, v′) : v, v′ ∈ V ∧
v < v′}|.

In what follows, given some operation φ (such as the
weak composition operation �), the unique ⊆-maximal φ-
consistent sub-QCN of N is called the closure of N under
φ-consistency and is denoted by φ(N ).

We recall the definition of �-consistency, which is a basic
and widely used local consistency for reasoning with QCNs.
Definition 3. Given a QCN N = (V,C), N is �-consistent
iff ∀v, v′, v′′ ∈ V , C(v, v′) ⊆ C(v, v′′) � C(v′′, v′).

In the sequel, given a QCNN of some calculus, we assume
that �(N ) always exists and that it is computable in polyno-
mial time in |N |, and that �-consistency decides the satisfi-
ability of atomic QCNs. These assumptions hold for many
widely adopted qualitative calculi [Dylla et al., 2013]; how-
ever, there do exist calculi (and new ones may arise) where
the assumptions may not hold (e.g., [Hirsch, 1999]).

3 Robustness in QCNs
In this section, we introduce and study a notion of robust-
ness in QCNs, and formally define related terms such as the
robustness problem and a robust scenario of a QCN. Gen-
erally, robustness can be defined as “the ability of a system
to resist change without adapting its initial stable configura-
tion” [Wieland and Wallenburg, 2012]. In our context, we are
interested in a satisfiable scenario of a QCN (see Figure 2b)
with the ability to retain its satisfiability more than any other
in the case where some of its constraints are changed. In other
words, we are interested in obtaining a satisfiable scenario of
a QCN that has more chances than any other to remain valid
(satisfiable) after it is altered. We call such a scenario a ro-
bust scenario, a scenario with the maximum ability of resist-
ing and avoiding unsatisfiability. Therefore, a robust scenario
can be seen as a proactive measure that limits as much as pos-
sible the need for successive repairs, and hence can play an
important role in environments that are prone to perturbation
and unexpected change, such as real-life configurations.
Definition 4. (Perturbation) Given a QCN N and a scenario
S of N , we say that S is perturbed iff one or more of its
constraints change, resulting in a different scenario S ′ of N .

Before moving on to the main definitions of this section,
we first introduce the operator #sameCons, which allows
measuring the number of constraints that are the same respec-
tively between two atomic QCNs over the same set of vari-
ables. More formally, given two atomic QCNs N = (V,C)
and N ′ = (V,C ′), #sameCons(N ,N ′) = |{(v, v′) : v, v′ ∈
V ∧ v < v′ ∧ C(v, v′) = C ′(v, v′)}|. We note that the con-
dition v < v′ is used because C(v, v′) and C(v′, v) concern
a same constraint, since C(v, v′) = C(v′, v)−1 for any QCN
N = (V,C) and v, v′ ∈ V , and because C(v, v) = {Id} for
any QCN N = (V,C) and v ∈ V .

In what follows, the set of scenarios of N will be denoted
by [N ] and the set of satisfiable scenarios of N by [[N ]].
Clearly, for any given QCN N it holds that [[N ]] ⊆ [N ].

Next, we define a similarity measure to be able to assess
how similar an atomic QCNN is on average to a set of atomic
QCNs M (that may or may not include N ).

Definition 5. (Similarity Measure) Given an atomic QCNN
and a set M of atomic QCNs over the same set of variables,
the similarity measure of N with respect to M, denoted by
similarity(N ,M), is defined to be:

similarity(N ,M) =

∑
N ′∈M

#sameCons(N ,N ′)/|N ′|

|M|

In other words, the similarity function with N and M as
its parameters, measures the common constraints on average
between N and each of the QCNs in M. Note that, for any
given atomic QCN N and set M of atomic QCNs over the
same set of variables, we have that:

similarity(N ,M) ∈ [0, 1]

Thereby, it is possible to use the similarity measure for
atomic QCNs of different size.

Now, we define the notion of a robust scenario of a QCN.

Definition 6. (Robust Scenario) Given a QCN N , a scenario
S of N is said to be robust iff we have that:

S ∈ argmax
S′∈[[N ]]

similarity(S ′, [[N ]])

Intuitively, a robust scenario of a QCN N has the largest
number of common constraints on average with each satisfi-
able scenario ofN . To be in line with our claims in this paper,
we assume that the following statistical property holds:

Property 1. Given a QCN N , the probability that a scenario
S ofN remains satisfiable once it is perturbed, is a monoton-
ically increasing function of similarity(S, [[N ]]).

Thus, a robust scenario of a QCN N is one that is more
likely to fall within the set [[N ]] when perturbed and, conse-
quently, one that is more likely to withstand that perturbation.

Example 1. Let us view again the simplified QCN of Fig-
ure 1, and let us interpret it now as a QCNN of Interval Alge-
bra (which has 13 base relations); so, before ∨ after becomes
{p, pi}, before becomes {p}, and ? becomes B. A robust
scenario S of N can be defined by labeling the arc between
Task A and Task B with {pi}, and the arc between Task A
and Task C with {p}. Then, S produces a similarity measure
of around 0.7 when compared against the entire set [[N ]] of
14 satisfiable scenarios of the QCN, which is the highest the-
oretically possible measure (as the measure is upper bounded
by |N |+(|N |−1)·(|[[N ]]|−1)

|[[N ]]|·|N | , i.e., S must differ from any other
scenario of [[N ]] by at least one constraint). By contrast, a
feeble scenario of N , when argmax is replaced by argmin
in Definition 6, can be obtained by labeling the arc between
Task A and Task B with {p}, and the arc between Task A
and Task C with {p} (now the only possible option). This
scenario produces a similarity measure of around 0.4.

The definition of the robustness problem of a QCN is
straightforward.



Definition 7. (Robustness Problem) Given a QCNN , the ro-
bustness problem is finding a robust scenario S of N .

The robustness problem is an optimization problem; the
related decision problem can be defined as follows:

Definition 8. (k-Robustness Problem) Given a QCN N and
a rational number k ∈ [0, 1], the k-robustness problem is
checking the existence of a scenario S of N such that S is
satisfiable and we have that:

similarity(S, [[N ]]) ≥ k

We have the following complexity result:

Proposition 1. Given a qualitative calculus Q for which the
satisfiability problem is NP-complete, the k-robustness prob-
lem for Q is NP-hard.

Proof. We can solve the k-robustness problem of a given
QCNN of Q by choosing k = 0 and determining ifN is sat-
isfiable. Hence, the k-robustness problem for Q is NP-hard
as the satisfiability problem for Q is NP-hard.

Next, we formally define the notion of a maximum scenario
of a QCN, which is not necessarily satisfiable:

Definition 9. (Maximum Scenario) Given a QCN N , a sce-
nario S of N is said to be maximum iff we have that:

S ∈ argmax
S′∈[N ]

similarity(S ′, [[N ]])

On its own, a maximum scenario of a given QCN can serve
as a practical upper bound of the similarity measure that we
can achieve. However, as [[N ]] ⊆ [N ], the following implied
result (the detailed practical importance of which is unveiled
in the next section) allows us to directly obtain a robust sce-
nario of a QCN through a maximum scenario of it:

Proposition 2. Given a QCN N , a maximum scenario S of
N is also a robust scenario of N iff S is satisfiable.

Finally, we end this section with the following result:

Proposition 3. Given a QCN N , a robust or maximum sce-
nario of N is not unique in general.

Proof. Let us consider the QCN N = (V,C) that is de-
fined by the variables v and v′ and the constraint C(v, v′) =
{p, pi}. Each of its two scenarios is maximal and robust.

4 Algorithm for robust scenarios of QCNs
In this section, we present a first algorithm for obtaining a
robust scenario of a QCN. Before doing so, let us briefly
describe a naive algorithm for carrying out this task. Given
a QCN N , a naive algorithm would compute the set [[N ]]
of satisfiable scenarios of N , and would then compare each
one of those scenarios against all other. This would require
O(|[[N ]]|2 · |N |+ |B||N | ·α(N )) time and O(|N | · |[[N ]]|+
β(N )) space, where α(N ) and β(N ) would be the time and
space needed respectively for obtaining a satisfiable scenario
ofN . The algorithm that we present in what follows is able to
carry out the same task usingO(|[[N ]]| · |N |+ |B||N | ·α(N ))

Algorithm 1: RobustScen(N ,Oracle)
in : A satisfiable QCNN = (V,C), and a generator

Oracle that iterates [[N ]].
out : A robust scenario ofN .

1 begin
2 ν ← dict()
3 foreach v, v′ ∈ V : v < v′ do
4 ν[(v, v′)]← dict();
5 foreach b ∈ B do
6 ν[(v, v′)][b]← 0;

7 foreach (V,C′) ∈ Oracle(N ) do
8 foreach v, v′ ∈ V : v < v′ do
9 extract b from C′(v, v′) = {b};

10 ν[(v, v′)][b]← ν[(v, v′)][b] + 1;

11 Smaximum = (V,C′)←⊥V ;
12 foreach v, v′ ∈ V : v < v′ do
13 countmax← 0 ;
14 foreach b ∈ B do
15 if ν[(v, v′)][b] > countmax then
16 countmax← ν[(v, v′)][b];
17 brelmax← b;

18 C′(v, v′)← {brelmax};
19 C′(v′, v)← {brelmax}−1;

20 if ∅ 6∈ �(Smaximum) then return Smaximum ;
21 summax← 0;
22 foreach (V,C′) ∈ Oracle(N ) do
23 sum← 0;
24 foreach v, v′ ∈ V : v < v′ do
25 extract b from C′(v, v′) = {b};
26 sum← sum + ν[(v, v′)][b];

27 if sum > summax then
28 summax← sum;
29 Srobust← (V,C′);

30 return Srobust;

Algorithm 2: GenScen(N )
in : A QCNN = (V,C).
out : A satisfiable scenario ofN , or ⊥V .

1 begin
2 N ← �(N );
3 if ∅ ∈ N then return ⊥V ;
4 ifN is atomic then yieldN ; return;
5 foreach v, v′ ∈ V : v < v′ do
6 if |C(v, v′)| > 1 then break;

7 foreach b ∈ C(v, v′) do
8 C(v, v′)← {b};
9 C(v′, v)← {b}−1;

10 foreach S ∈ GenScen(N ) do
11 if S 6= ⊥V then yield S ;

12 return ⊥V ;

time and O(|N |+β(N )) space. In the end, we show that the
space complexity can be as low as O(|N |), i.e., linear in |N |.

Let us come back to our algorithm, called RobustScen
and presented in Algorithm 1. RobustScen first initializes a



counter to store the number of occurrences of each base rela-
tion for each constraint over the set of all satisfiable scenarios
of a given QCN N . Then, it calculates a maximum scenario
of N by choosing the most frequent base relation for each
constraint. If this maximum scenario is satisfiable, then it re-
turns it, as it is also a robust scenario of N by Proposition 2;
otherwise, it proceeds to obtain a robust scenario ofN by cal-
culating the similarity between a satisfiable scenario ofN and
[[N ]], via the efficient use of the aforementioned counter. We
note that to obtain a space complexity of as low as O(|N |),
the set [[N ]] needs to be recalculated.1 This makes Proposi-
tion 2 of particular practical importance, as this recalculation
may be avoided by simply checking if the obtained maximum
scenario of N is satisfiable; such a check takes polynomial
time in |N | (see Section 2). Finally, RobustScen receives as
input a generator too, viz., Oracle, that iterates [[N ]]; such a
generator is presented in Algorithm 2. Simply put, a gener-
ator is a function that can stop midway (via the execution of
the yield operator) and then continue from where it stopped.

Theorem 1. Given a satisfiable QCN N and a generator
Oracle that iterates [[N ]], Algorithm 1 returns a robust sce-
nario of N using O(|[[N ]]| · |N | + |B||N | · α(N )) time and
O(|N |+β(N )) space, where α(N ) and β(N ) is the time and
space needed respectively for the used generator to obtain a
satisfiable scenario of N .

Proof. First, we prove that the output of the algorithm is a
robust scenario of N . In lines 11–19, a scenario Smaximum

= (V,C ′) is constructed in such a way that ∀v, v′ ∈ V the
constraint C ′(v, v′) is defined by a base relation b such that:

b ∈ argmax
b∈B

|{(V,C) ∈ [[N ]] : C(v, v′) = {b}}|

This implies that:

Smaximum ∈ argmax
S∈[N ]

∑
S′∈[[N ]]

#sameCons(S,S ′)

And finally by Definition 5 we obtain that:

Smaximum ∈ argmax
S∈[N ]

similarity(S, [[N ]])

Therefore, by Definition 9, Smaximum is a maximum sce-
nario ofN . In line 20, Smaximum is returned if it is satisfiable;
hence, by Proposition 2 a robust scenario of N is returned.

In lines 21–29, a scenario Srobust is chosen such that:

Srobust ∈ argmax
(V,C)∈[[N ]]

∑
v,v′∈V :v<v′

|{(V,C ′) ∈ [[N ]] :

C(v, v′) = C ′(v, v′)}|
By definition of the #sameCons operator, this can be

rewritten as:

Srobust ∈ argmax
S∈[[N ]]

∑
S′∈[[N ]]

#sameCons(S,S ′)

1Even if we unify the satisfiable scenarios from the first calcu-
lation into the, so called, minimal sub-QCN of the input QCN [Liu
and Li, 2012], extracting a scenario from that minimal sub-QCN is
not any easier than extracting a scenario from the original QCN [Liu
and Li, 2012]; we have also found this to be true in practice.

And finally by Definition 5 we obtain that:

Srobust ∈ argmax
S∈[[N ]]

similarity(S, [[N ]])

Therefore, by Definition 6, Srobust is a robust scenario of
N ; hence, a robust scenario of N is returned in line 30.

Now, we prove the complexity of the algorithm. In lines 2–
6, a dictionary (hash map) is constructed to count the fre-
quency that a given base relation defines a constraint among
all satisfiable scenarios. This takes O(|N |) time and space.
Then, in lines 7–10 this dictionary is updated by iterating
[[N ]] and the constraints of each scenario in [[N ]]. This takes
O(|[[N ]]| · |N | + |B||N | · α(N )) time and O(|N | + β(N ))
space. In lines 11–19 a scenario is constructed and updated,
which takes O(|N |) time and space. Finally, in lines 22–29,
we again iterate [[N ]] and the constraints of each scenario in
[[N ]]. Thus, Algorithm 1 usesO(|[[N ]]|·|N |+|B||N | ·α(N ))
time and O(|N |+ β(N )) space to provide an output.

Given the use of Algorithm 2, called GenScen, in place of
Oracle for Algorithm 1, we can obtain the following result:

Corollary 1. Given a satisfiable QCN N and the generator
GenScen, Algorithm 1 returns a robust scenario of N using
O(|[[N ]]|·|N |+|B||N |·α(N )) time andO(|N |) space, where
α(N ) is the time needed to compute �(N ).

GenScen is an algorithmic representation of a recursive
generator for iterating the satisfiable scenarios of a given
QCN, which is based on the original algorithm described
in [Allen, 1983] (also cf. [Ladkin and Reinefeld, 1992]).

5 Evaluation
In this section, we report on a preliminary experimentation
that was performed primarily to assess the differences that
may or may not exist between the scenarios of a given QCN
N with respect to their similarity measure and perturba-
tion tolerance. Secondarily, results are reported on the time
needed to compute a robust scenario of N , on the size of
[[N ]], and on the % of the time that a maximum scenario of
N is satisfiable and hence also a robust scenario of N .

Technical Specifications We used a computer with an
Intel R© Xeon R© CPU E3-1231 v3 processor at 3.40GHz per
core, 16 GB of RAM, and the Xenial Xerus x86 64 OS
(Ubuntu Linux). All algorithms were coded in Python and
run using PyPy 7.1.1. Only one CPU core was used.

Datasets We considered 100 satisfiable QCNs of 50 con-
straints each that were created using uniformly selected in-
terval relations appearing in job-shop scheduling problems
in the SMT-LIB [Barrett et al., 2016]; these QCNs in-
volve relations from the set B̂ \ {{d, di, o, oi, s, si, f, fi, e},
{pi,mi, oi}, {p,m, o}} \ {{b} : b ∈ B}, where B̂ denotes the
closure of B under intersection, weak composition, and con-
verse. In addition, we considered 100 satisfiable QCNs of 50
constraints each that were created using uniformly selected
standard interval relations, i.e., relations from 2B.

Results The results regarding the similarity measure of the
various types of scenarios, viz., maximum, robust, feeble
(when argmax is replaced by argmin in Definition 6), and
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Figure 3: Similarity measure comparison (job-shop dataset)

Table 1: Average metrics for the used datasets

Dataset |[[N ]]| % #
ymaximum

robust time

Job-shop 527 573.53 45% 4.70s
Standard 896 889.61 49% 8.46s

minimum (when argmax is replaced by argmin in Defini-
tion 9) are depicted in Figure 3 for the dataset of job-shop
interval relations. (The respective figure for the dataset of
standard interval relations is qualitatively similar.) On aver-
age, the similarity measure for robust and feeble scenarios
regarding job-shop interval relations is 0.61 and 0.28 respec-
tively, i.e., a robust scenario is more than two times as robust
as a feeble one. This ratio is even more pronounced regard-
ing standard interval relations, as the similarity measure for
robust and feeble scenarios in this case is 0.51 and 0.10 re-
spectively on average, i.e., a robust scenario is more than five
times as robust as a feeble one; this is likely due to the fact
that 2B, being the entire set of interval relations, allows for
more diverse constraints to be defined in general. In both
cases, the similarity measure of a robust scenario is almost
exactly the same as that of a maximum scenario. In fact, Ta-
ble 1 shows that a maximum scenario is also a robust one
around 50% of the time for both datasets used here, and also
further strengthens our argument that using the set 2B of inter-
val algebra relations allows for obtaining more diverse QCNs,
which consequently yield more satisfiable scenarios.

To obtain a first assessment of the perturbation tolerance
of the various types of satisfiable scenarios, i.e., their abil-
ity to retain their satisfiability once they are perturbed, we
computed for each considered scenario S all the possible per-
turbations that involved a change in a single constraint of S,
and counted the times that S “survived” such a perturbation.
In what follows, a perturbation tolerance of x% for a given
satisfiable scenario suggests that the scenario was able to re-
sist the aforementioned type of perturbation x% of the time.
The results regarding the perturbation tolerance of robust and
feeble scenarios are depicted in Figure 4 for the dataset of job-
shop interval relations. (The respective figure for the dataset
of standard interval relations is qualitatively similar.) We ex-
cluded maximum and minimum scenarios from the study as
these are not necessarily satisfiable, and whenever they are
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Figure 4: Perturbation tolerance comparison (job-shop dataset)

they correspond to robust and feeble scenarios respectively
(see Proposition 2). On average, the perturbation tolerance
for robust and feeble scenarios regarding job-shop interval
relations is 26.61% and 4.54% respectively, i.e., a robust sce-
nario is almost six times more likely to withstand a perturba-
tion than a feeble one. Regarding standard interval relations,
the perturbation tolerance for robust and feeble scenarios is
20.73 and 1.15% respectively on average, i.e., a robust sce-
nario is more than eighteen times more likely to withstand a
perturbation than a feeble one.

6 Conclusion and future work
In this paper, we introduced and studied a notion of robust-
ness in QCNs, which are typically used to represent and rea-
son about abstract spatial and temporal information in AI. In
particular, given a QCN N , we investigated the problem of
obtaining a robust scenario of N , which is a satisfiable sce-
nario that has a higher perturbation tolerance than any other,
or, in other words, a satisfiable scenario that has more chances
than any other to remain valid after it is altered. Although this
challenging problem typically requires to take into account
the entire set of satisfiable scenarios ofN , whose size is usu-
ally exponential in the number of its constraints, we presented
here a first algorithm that computes a robust scenario of N
using linear space in the number of constraints. Preliminary
results with a dataset from the job-shop scheduling domain,
and a standard one, show the interest of our approach and
unveil vast differences among the scenarios of a QCN with
respect to their robustness. Our work, being novel in QSTR,
opens up many interesting directions of future work, from
both a theoretical and a practical perspective. Computing a
robust scenario of a QCN can be very costly, as our first com-
putational bounds suggest, thus, it would be useful to define
heuristics that would obtain a “good” scenario of a QCN in a
more timely manner. Further, the related notions of stability
and flexibility [Hebrard, 2007] would be worth exploring, and
our current framework could be further extended with the in-
tegration of generalized neighborhood graphs that could be
used to explicitly model allowed and/or disallowed perturba-
tions [Ragni and Wölfl, 2005]. Finally, it is an open question
if the verification of a robust scenario is in NP.
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