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Abstract. Inconsistency handling is a fundamental problem in
knowledge representation and reasoning. In this paper, we study this
problem in the context of qualitative spatio-temporal reasoning, a
framework for reasoning about space and time in a symbolic, human-
like manner, by following an approach similar to that used for defin-
ing paraconsistent logics; paraconsistency allows deriving informa-
tive conclusions from inconsistent knowledge bases by mainly avoid-
ing the principle of explosion. Inspired by paraconsistent logics, such
as Priest’s logic LPm, we introduce the notion of paraconsistent sce-
nario (i.e., a qualitative solution), which can be seen as a scenario
that allows a conjunction of base relations between two variables,
e.g., x precedes ∧ follows y. Further, we present several interesting
theoretical properties that concern paraconsistent scenarios, includ-
ing computational complexity results, and describe two distinct ap-
proaches for computing paraconsistent scenarios and solving other
related problems. Moreover, we provide implementations of our two
methods for computing paraconsistent scenarios and experimentally
evaluate them using different strategies/metrics. Finally, we show
that our paraconsistent scenario notion allows us to adapt to quali-
tative reasoning one of the well-known inconsistency measures em-
ployed in the propositional case, namely, contension measure.

1 Introduction
Inconsistency may arise for many reasons: human error, multi-source
information, imprecision and vagueness, noisy data, information
evolution over time, etc. This explains the need for inconsistency-
tolerant systems to deal with real-world situations. The Knowledge
Representation & Reasoning community has extensively studied this
topic leading to several inconsistency handling works, e.g., [32, 29, 4,
7, 37, 26, 33]. In this work, we are interested in the use of paracon-
sistency for inconsistency handling in Qualitative Spatio-Temporal
Reasoning (to be introduced in the sequel). A logic is paraconsistent
if it does not validate the principle of explosion, which states that any
formula can be proven from contradiction. In particular, Priest’s min-
imally inconsistent logic of paradox LPm [27] avoids this principle
by allowing variables to be both true and false. This can be seen as
a way to allow for the existence of contradictions without collapsing
into triviality: consistent and inconsistent elements can coexist in a
logical statement without rejecting it as false.

In everyday natural language descriptions, one typically uses ex-
pressions such as inside or during to spatially or temporally relate
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Figure 1. A simplified temporal constraint network, where ? denotes the
disjunction of all base relations; the constraint between Tasks B and D (and,

equivalently, A and C) is not repairable, but we can replace ? with the
conjunction ‘precedes ∧ follows’ and achieve paraconsistency.

one object with another object or oneself, without providing the ex-
act metric information about these entities. An AI framework that
aims to capture this type of human-like representation and reasoning
pertaining to space and time is known as Qualitative Spatio-Temporal
Reasoning (QSTR) [15, 25]. Specifically, QSTR is a major field of
study in Knowledge Representation and Reasoning that deals with
the concepts of space and time in an abstract, natural manner, with
applications in many areas such as visual sensemaking [36] and qual-
itative case-based reasoning and learning [19], to name some recent
ones. More formally, QSTR restricts the vocabulary of rich mathe-
matical theories that deal with spatial and temporal entities to simple
qualitative constraint languages, which can be used to form inter-
pretable spatio-temporal constraint networks of disjunctions of base
relations, such as the one shown in Figure 1. However, as with any
other typical logic- or constraint-based framework, QSTR is not im-
mune to contradictions that may be present in information.

Motivation

Naturally, the motivation behind studying paraconsistency in the con-
text of QSTR draws from the rich literature in paraconsistency itself.
However, we present an example here to help the reader understand
one of many cases of how this notion can apply to QSTR. Consider
Figure 1, and let us ground it in a realistic scenario of task scheduling
in a factory. We can view Task D as an inspection task of a product
in the production pipeline, and the other tasks as necessary compo-
nents in the manufacturing process of that product. Clearly, a mistake
occured in the design of the pipeline, as the schedule is unfeasible.
The constraint between Tasks B and D is not repairable, so, to re-
store consistency, we would have to repair some other constraints.
However, this may be impossible too, due to hard dependencies in



the pipeline, e.g., product preparation, say Task B, precedes product
packaging, say Task C. Instead of rejecting the entire schedule, we
opt to acknowledge the contradiction and reason with it. Here, we
can retrieve a paraconsistent configuration where Task B both pre-
cedes and follows Task D. This not only helps us to understand the
contradiction, but, in this example, to also observe that the inspec-
tion task was probably meant to occur both at an earlier and at a later
stage of the production pipeline and should thus be replicated.

Contributions

Our first contribution is the introduction of the notion of paraconsis-
tent scenario (para-scenario for short). To some extent, it can be seen
as an adaptation of the approach used for defining LPm to QSTR. In-
deed, similarly to LPm, where an interpretation can assign a propo-
sitional variable more than one truth value, our base idea consists in
allowing constraints to involve a conjunction of more than one base
relation, as a means to achieve compatibility with other constraints
(see Figure 1); then, we focus on the para-scenarios that are as consis-
tent as possible, which are obtained by avoiding as much as possible
the use of such conjunctions.

Our second contribution is the theoretical study of several interest-
ing properties of para-scenarios. In particular, we show that the prob-
lem of determining whether an interpretation is a para-scenario is
coNP-complete in the case of several well-known QSTR formalisms.

Our third contribution involves providing and evaluating two
open-source approaches for solving the problem of para-scenario
computation and other related problems. The first approach is based
on a notion of constraint freezing (cf. [10]) within calls to a native
qualitative reasoner: when a constraint is frozen, it cannot lose any
base relation during solving, but, in contrast to [10], it can participate
in compositions with other constraints. The second approach consists
of using SAT-based encodings, where we involve the problems of X-
minimal model computation and Partial MaxSAT in particular.

Finally, our fourth contribution is showing how the notion of para-
scenario can be used for inconsistency measurement. Indeed, we pro-
pose inconsistency measures that can be seen as the first adaptation
of the well-known contension measure to QSTR [16]. This contri-
bution is provided just as a concrete example of how our framework
can be exploited to analyze/measure inconsistency. The definition of
such measures in the literature is commonly guided by rationality
postulates. In our study, we show that our measures fulfill postulates
that enjoy a broad consensus.

Organization The rest of the paper is organized as follows. In
Section 2 we recall some definitions, and introduce certain neces-
sary notions and notations that are used throughout the paper. Then,
in Section 3 we introduce and theoretically establish our paraconsis-
tency framework for QSTR, and prove certain fundamental proper-
ties. Next, in Section 4 we provide greedy constraint-based and opti-
mal SAT-based methods for solving various paraconsistency-related
problems, which we proceed to evaluate. Moreover, in Section 5 we
propose some inconsistency measures pertaining to paraconsistency,
and consequently show how our ideas can be used to quantify incon-
sistency in QSTR. Finally, in Section 6 we conclude our work and
give some directions for future research.

2 Preliminaries and Notations
A binary qualitative spatial or temporal constraint language is based
on a finite set B of jointly exhaustive and pairwise disjoint relations,

precedes p meets m overlaps o starts s
x y x y x y x y

during d finishes f equals eq
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Figure 2. A representation of the 13 base relations b of IA, each one
relating two potential intervals x and y as in x b y; the converse of b, i.e.,

b−1, can be denoted by bi and is omitted in the figure.

called base relations [25] and defined over an infinite domain D
(e.g., R). Specifically,

⋃
{b ∈ B} = D × D, and, ∀b, b′ ∈ B s.t.

b ̸= b′, b ∩ b′ = ∅. The base relations of a particular qualitative
constraint language can be used to represent the definite knowledge
between any two of its entities with respect to the level of granular-
ity provided by the domain D. The set B contains the identity rela-
tion Id, and is closed under the converse operation (−1). Indefinite
knowledge can be specified by a union of possible base relations,
and it is represented by the set containing them. Hence, 2B repre-
sents the total set of relations. The set 2B is equipped with the usual
set-theoretic operations of union and intersection, the converse op-
eration, and the weak composition operation denoted by the symbol
⋄ [25]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 : b ∈ r}.

The weak composition (⋄) of two base relations b, b′ ∈ B is defined
as the smallest (i.e., most restrictive) relation r ∈ 2B that includes
b ◦ b′, or, formally, b ⋄ b′={b′′ ∈ B : b′′∩(b ◦ b′) ̸= ∅}, where
b◦b′={(x, y) ∈ D×D : ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′}
is the (true) composition of b and b′. For all r, r′ ∈ 2B, we have that
r ⋄ r′ =

⋃
{b ⋄ b′ : b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal
constraint language of Interval Algebra (IA), introduced by Allen [1].
IA considers time intervals (as temporal entities) and the set of base
relations B = {eq, p, pi, m, mi, o, oi, s, si, d, di, f , fi} to en-
code knowledge about the temporal relations between intervals on
the timeline, as described in Figure 2. As another example, the Re-
gion Connection Calculus (RCC8) [28] considers spatial regions and
the set of base relations B = {DC, EC, EQ, PO, TPP , TPPi,
NTPP , NTPPi} to reason about topological relations between re-
gions. Regarding RCC5, it is a fragment of RCC8 where boundaries
of regions have no significance [5].

Finally, the challenge of representing and reasoning about quali-
tative spatio-temporal information can be facilitated by a qualitative
spatio-temporal network (QCN), defined as follows:

Definition 1 A qualitative spatio-temporal network (QCN) is a tuple
(V,C) where:

• V is a finite set of variables over some infinite domain D (e.g.,
time points or 2D regions);

• and C is a mapping C : V × V → 2B associating a relation (set
of base relations) with each pair of variables s.t. C(v, v) = {Id}
for all v ∈ V and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

A simplified QCN is shown in Figure 1. For convenience, we
often consider that the set of variables of a QCN consists of integers.

A QCNN = (V,C) is said to be trivially inconsistent iff ∃v, v′ ∈
V such that C(v, v′) = ∅.

A solution of a QCN N = (V,C) is a mapping σ : V → D such
that ∀v, v′ ∈ V , ∃b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b; N is
said to be consistent if and only if it admits a solution.

A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C′)
such that, ∀u, v ∈ V , C′(u, v) ⊆ C(u, v).



A scenario ofN is a consistent atomic sub-QCN S ofN , where a
QCN S = (V,C′) is atomic iff, ∀v, v′ ∈ V , |C′(v, v′)| = 1.

A max-scenario of N is a consistent atomic QCN S = (V,C′)
s.t. there is no other consistent atomic QCN S ′ = (V,C′′) s.t.
{(v, v′) ∈ V × V : C′(v, v′) ⊆ C(v, v′)} ⊊ {(v, v′) ∈ V × V :
C′′(v, v′) ⊆ C(v, v′)}. Roughly speaking, a max-scenario of N
maximizes the number of satisfied constraints in N . Here, given a
max-scenario S = (V,C′) of N , we use size(S) to denote the size
of the set {(v, v′) ∈ V × V : v < v′, C′(v, v′) ⊆ C(v, v′)}. Fur-
thermore, we use MCS(N ) to denote the set of all max-scenarios
ofN .

The following notational conventions are used throughout the pa-
per for every QCNN = (V,C):

• For two variables v, v′ ∈ V , we useN [v, v′] to denote the relation
C(v, v′).

• For two variables v, v′ ∈ V and a relation r ∈ 2B, we use v r v′

to denote that C(v, v′) = r when there is no ambiguity about the
considered QCN.

• For two variables v, v′ ∈ V and a relation r ∈ 2B, we use
N[v,v′]/r to denote the result of substituting C(v, v′) with r inN .
Formally,N[v,v′]/r is the QCN (V,C′) defined by C′(v, v′) = r,
C′(v′, v) = r−1 and, ∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)},
C′(u, u′) = C(u, u′).

• For V ′ ⊆ V , we useN↓V ′ to denote the QCNN restricted to V ′.

Finally, for the sake of simplicity, it is worth noting that our focus
in this work is exclusively on calculi in which every atomic QCN
that is closed under weak composition is consistent, which covers
the majority of well-known calculi [15].

3 Para-scenarios and Paraconsistency
We introduce a new notion called paraconsistent scenario (or para-
scenario for short), which extends the idea of a scenario to include
multiple base relations (i.e., a conjunction of them) between two
variables. This notion is analogous to that of minimally inconsistent
model in the paraconsistent logic LPm [27], where a variable can
take multiple truth values by being both true and false. Intuitively,
the notion of para-scenario allows us to take into account the possible
conflicts without considering that the whole QCN is not informative.

We define a para-relation as an expression of the form b1 ∧
· · · ∧ bk where k ≥ 1 and b1, . . . , bk are distinct base relations.
We use Conj(B) to denote the set of para-relations built over the
set of base relations B. For the sake of simplicity, we often refer
to a para-relation as a non-empty set of base relations. Given two
para-relations c and c′, we use c ⋄ c′ to denote the para-relation∧⋃

b∈c,b′∈c′ b ⋄ b
′. Furthermore, we write (b1 ∧ · · · ∧ bk)

−1 for
(b1)

−1 ∧ · · · ∧ (bk)
−1.

Definition 2 (Paraconsistent Scenario) A paraconsistent scenario
(or para-scenario for short) of a QCN N = (V,C) is an ordered
pair P = (V,R) where R is a mapping V × V → Conj(B) s.t.:

1. (Identity) for all v ∈ V , R(v, v) = id;
2. (Conversion) for v, v′ ∈ V , R(v, v′) = (R(v′, v))−1;
3. (Paraconsistency) for all v, v′ ∈ V , R(v, v′) ∩ C(v, v′) ̸= ∅;
4. (Closedness) for all v, v′, v′′ ∈ V , there exist b ∈ R(v, v′′), b′ ∈

R(v, v′) and b′′ ∈ R(v′, v′′) s.t. b ∈ b′ ⋄ b′′; and
5. (Minimality) there is no P ′ = (V,R′) that satisfies Properties

1-4, and {(v, b, v′) ∈ V × B × V : |R′(v, v′)| > 1 and b ∈
R′(v, v′)} ⊊ {(v, b, v′) ∈ V × B × V : |R(v, v′)| > 1 and b ∈
R(v, v′)}.

Given a para-scenario P = (V,R), the notation P! represents the
set {(i, b, j) ∈ V × B× V : i < j, |R(i, j)| > 1 and b ∈ R(i, j)}.

The paraconsistency degree of para-scenarioP = (V,R), denoted
∆(P), is the number of pairs of variables where the para-relation
contains more than one base relation: ∆(P) = {{i, j} : i, j ∈
V, |R(i, j)| > 1}. The paraconsistency width of P = (V,R), de-
noted W (P), is the maximum number of base relations between two
variables occurring in P: W (P) = max{|R(i, j)| : i, j ∈ V }.

Proposition 1 Every not trivially inconsistent QCN N admits a
para-scenario P where W (P) ≤ 2 and ∆(P) ≤ k where k =
min{m−size(S) : S ∈MCS(N )} and m = |{(v, v′) ∈ V ×V :
v < v′}|.

Proof. Let N = (V,C) be a not trivially inconsistent QCN and
S = (V,C′) a max-scenario of N s.t. size(S) = m − k. Then, we
define P = (V,R) where R is a mapping V ×V → Conj(B) as fol-
lows: ∀i, j ∈ V with S[i, j] ⊆ C(i, j), R(i, j) = S[i, j]; ∀i, j ∈ V
with i < j and S[i, j] ̸⊆ C(i, j), R(i, j) =

∧
S[i, j] ∪ {b} and

R(j, i) = (R(i, j))−1, where b is an arbitrary base relation occur-
ring in C(i, j). Clearly, P satisfies Properties 1-4 in Definition 2.
Further, max{|R(i, j)| : i, j ∈ V } ≤ 2 and ∆(P) = k. Thus,
due to the definition of Minimality, we deduce that there exists a
para-consistent scenario ofN where W (P) ≤ 2 and ∆(P) ≤ k. ⊣

The following proposition shows that the notion of para-scenario
allows recovering classical reasoning in the case of consistent QCNs.

Proposition 2 If N is a consistent QCN, then P is a para-scenario
ofN iff P is a scenario ofN .

Proof. This property is mainly due to the fact that P! = ∅ iff P is a
consistent atomic QCN. ⊣

Given a QSTR formalism F , we use IsPS(F) to refer to the fol-
lowing problem:

• Input: A QCNN in F and an ordered pair P = (V,R) where R
is a mapping V × V → Conj(B) that satisfies Properties 1-4 in
Definition 2.

• Output: Determine whether P is a para-scenario ofN .

Theorem 1 The problems IsPS(IA), IsPS(RCC5) and
IsPS(RCC8) are coNP-complete.

Proof. Let us first show that IsPS(F) are in coNP for
F ∈ {IA,RCC5,RCC8}. Let N be a QCN and P = (V,R) an
ordered pair s.t. R is a mapping V × V → Conj(B) that satisfies
Properties 1-4 of the definition of para-scenario. To show that P is
not a para-scenario of N , we only need to show that there exists
P ′ = (V,R′) s.t. R′ satisfies Properties 1-4 and P ′! ⊊ P!. Thus
the proof that P is not a para-scenario is verifiable in polynomial
time, which yields that the complement problem of IsPS(F) is in
NP. Consequently, IsPS(F) is in coNP.

We now show that IsPS(IA), IsPS(RCC5) and IsPS(RCC8) are
coNP-hard.

Case of IA. To prove that IsPS(IA) is coNP-hard, we provide
an encoding of the 3-coloring problem into the complement of
IsPS(IA). Let G = (V,E) be an undirected graph with V =
1, . . . , n. To define our encoding we consider that each element of V
is an interval variable. Furthermore, we associate an additional inter-
val variable xi with each i ∈ V ; the set of these variables is denoted
V ′. Then our encodingNG corresponds to the following constraints:

i {m, eq,mi} xi for every i ∈ V (1)



i B xj for every i, j ∈ V with i ̸= j (2)

i {m,mi, p, pi} j for every {i, j} ∈ E (3)

xi {p, eq} xj for every i, j ∈ V with i < j and

i ̸= 1 or j ̸= n
(4)

x1 {eq} xn (5)

The QCNNG corresponds to an encoding of the 3-coloring prob-
lem for the instance G; a solution is obtained by associating a dis-
tinct color with each vertex i depending on which of the following
constraints is satisfied: i{mi}xi, i{eq}xi, and i{m}xi. Indeed, for
every {i, j} ∈ E, if i{b}xi with b ∈ {m, eq,mi}, then, using Con-
straint (3), we have j{b′}xi with b′ ∈ {m, eq,mi} \ {b}.

Let P = (V ∪ V ′, R) where R is a mapping V × V → Conj(B)
that satisfies Identity and Conversion, and is defined as follows:
R(i, xi) = {eq} for every i ∈ V ; R(i, j) = R(i, xj) = {p} for
all i, j ∈ V with i < j; R(xi, xj) = {p} for all i, j ∈ V with
i < j, and i ̸= 1 or j ̸= n; R(x1, xn) = {eq, p}. Clearly P satisfies
Paraconsistency and Closedness. Moreover, P does not satisfy Min-
imality if and only if NG is satisfied (see Proposition 2). Therefore,
P satisfies Minimality if and only if G does not admit a 3-coloring.

Case of RCC5. Sketch: To show coNP-hardness in this case, we
also use the complement problem of 3-coloring. Additionally, we use
Renz and Nebel’s encoding of the NP-hard problem Not-All-Equal-
3SAT (NAE-3SAT) into RCC5 [30]. First, we encode the 3-coloring
problem into NAE-3SAT. Then, the obtained formula is encoded into
RCC5 using Renz and Nebel’s encoding, and we exhibit a para-
scenario P candidate of this encoding such that |P!| = 1. Thus,
using again Proposition 2, P satisfies Minimality if and only if the
RCC5 encoding is inconsistent.

Case of RCC8. The coNP-hardness of IsPS(RCC5) is a direct
consequence of the coNP-hardness of IsPS(RCC5). ⊣

Note that a para-scenario may involve base relations between two
variables that do not occur in the corresponding constraint. This can
be problematic, especially when any such base relation that does not
appear between two variables is considered as impossible and must
be avoided in any information retrieval process. To address this prob-
lem, we introduce the notion of strong para-scenario.

Definition 3 (Strong Paraconsistent Scenario) A para-scenario
P = (V,R) of a QCN N is said to be strong if for all variables
i, j ∈ V , R(i, j) ⊆ C(i, j).

Clearly, there are not trivially inconsistent QCNs that do not ad-
mit strong para-scenarios. This is particularly true for all inconsistent
atomic QCNs.

Proposition 3 The problem of determining whether a QCN admits
a strong para-scenario is tractable.

Proof. Given a QCN N = (V,C), we only need to check whether
P = (V,R) satisfies Properties 1-4 in Definition 2, where for all
i, j ∈ V , R(i, j) =

∧
C(i, j). This comes form the fact that P

satisfies these properties iff there exists a para-scenario P ′ of N s.t.
P ′! ⊆ P!. ⊣

4 On Computing Para-scenarios
There are several interesting problems to study related to the notion
of para-scenario. In particular, the search for one or all para-scenarios

can be involved in the definition of paraconsistent consequence rela-
tions, which can be employed for extracting knowledge from incon-
sistent QCNs. For instance, a paraconsistent consequence relation
⊢p can be defined as follows:N ⊢p i r j holds iff for every (strong)
para-scenarioP = (V,R) ofN , r∩R(i, j) ̸= ∅; in other words, a re-
lation between two variables is accepted if it shares at least one base
relation with the para-relation between these variables in each para-
scenario. Other problems may involve the search for para-scenarios
that approximate classical reasoning as closely as possible, which
can be assessed using measures such as the paraconsistency degree,
the paraconsistency width and the size of the para-relations that con-
tain more than one base relation. We here consider the five following
problems, the last three of which are optimization problems:

• FindOnePS

Input: A QCNN and 2 positive integers α and β.

Output: A para-scenario P of N that satisfies ∆(P) ≤ α and
W (P) ≤ β if there exists at least one.

• FindAllPS

Input: A QCNN and 2 positive integers α and β.

Output: All para-scenarios P of N such that ∆(P) ≤ α and
W (P) ≤ β.

• MinimumDegreePS

Input: A QCNN and a positive integer β.

Output: A para-scenario P of N where W (P) ≤ β, and for
every para-scenario P ′ ofN , ∆(P) ≤ ∆(P ′).

• MinimumWidthPS

Input: A QCNN and a positive integer α.

Output: A para-scenario P of N where ∆(P) ≤ α, and for
every para-scenario P ′ ofN , W (P) ≤W (P ′).

• MinimumBaseRelPS

Input: A QCNN .

Output: A para-scenario P ofN where for every para-scenario
P ′ ofN , |P!| ≤ |P ′!|.

4.1 A Greedy Constraint Freezing-based Approach

We first provide a procedure, described in Algorithm 1, that
solves the problem FindOnePS and greedily aims to come close
to solutions for the optimizations problems MinimumDegreePS,
MinimumWidthPS, and MinimumBaseRelPS.

Definition 4 (F -Paraconsistent Scenario) Let N = (V,C) be a
QCN and F a subset of {(i, j) ∈ V × V : i < j}. A F -
paraconsistent scenario of N is an ordered pair P = (V,R) that
satisfies (i) Properties 1-4 in Definition 2; (ii) for every (i, j) ∈ F ,
R(i, j) =

∧
b∈C(i,j) b; and (iii) for every (i, j) ∈ (V ×V )\F with

i < j, |R(i, j)| = 1.

We say that the constraints that concern the pairs in F are frozen.

Proposition 4 Let N = (V,C) be a QCN. If P = (V,R) is an
F -paraconsistent scenario of a QCNN ′ s.t.

1. ∀i, j ∈ V with i < j, if (i, j) ∈ F thenN ′[i, j] = B;
2. ∀i, j ∈ V with i < j, if (i, j) /∈ F thenN ′[i, j] = N [i, j];



Algorithm 1: FINDPARASCENARIO

Data: A QCNN = (V,C)
Result: A para-scenario ofN

1 Let S0 be an arbitrary consistent atomic QCN
2 P ← N ;
3 for i, j ∈ V with i < j do
4 if S0[i, j] ̸⊆ C(i, j) then
5 P[i, j]← B ;
6 frozenCons[i, j]← true;
7 else
8 frozenCons[i, j]← false;
9 for i, j ∈ V with i < j and frozenCons[i, j] = true do

10 if SAT (P[i,j]/N [i,j], frozenCons[i,j]/false) then
11 frozenCons[i, j]← false;
12 P[i, j]← N [i, j];
13 for i, j ∈ V with i < j and frozenCons[i, j] = true do
14 M ← {(i, b, j) : b ∈ B};
15 while |P[i, j]| > 2 and ∃(i, b, j) ∈M s.t.

C(i, j) ∩ (P[i, j] \ {b}) ̸= ∅ do
16 r ← P[i, j] \ {b};
17 if SAT (P[i,j]/r, frozenCons) then
18 P[i, j]← r ;
19 M ←M \ {(i, b, j)};
20 return The last found F -paraconsistent scenario

3. ∀F ′ ⊊ F , there is no F ′-paraconsistent scenario of a QCN N ′′

that satisfies Properties 1 and 2 w.r.t. F ′;

then there exits a para-scenario P ′ = (V,R′) of N s.t. {(i, j) ∈
V × V : i < j, |R′(i, j)| > 1} = F .

Proof. Using the fact that P satisfies Properties 1-4 in Definition 2,
we know that there exits a para-scenario P ′ = (V,R′) of N
s.t. F ′ = {(i, j) ∈ V × V : i < j, |R′(i, j)| > 1} ⊆ F .
Let us first define the QCN N ′′ = (V,C′′) as follows: for all
i, j ∈ V with i < j, if (i, j) ∈ F then C′′(i, j) = B; otherwise,
C′′(i, j) = C(i, j). Then, we define P ′′ = (V,R′′) as follows: for
all i, j ∈ V with i < j, if (i, j) ∈ F ′ then R′′(i, j) = B; otherwise,
R′′(i, j) = R′(i, j). Clearly, P ′′ is an F ′-paraconsistent scenario of
N ′′. Consequently, due to Property 3, if we assume F ′ ⊊ F , we get
a contradiction. ⊣

In the first for-loop of our procedure FINDPARASCENARIO, we
compute a starting F -paraconsistent scenario where every frozen
constraint contains all base relations. Then, in the second for-loop,
we unfreeze the constraints that are unnecessarily frozen: this al-
lows us to minimize the set of frozen constraints w.r.t. set inclu-
sion. The last for-loop is used to reduce the number of base relations
to satisfy Minimality. For convenience, P[i, j] ← r also assumes
P[j, i] ← (r)−1, and ∀i ∈ V , P[i, i] ← Id. The SAT calls are
almost standard with regard to any native qualitative reasoner (e.g.,
[39]), the only difference being that the solving process is modified
to protect frozen constraints from getting refined. Specifically, our
intervention is very similar to the one described in [10, Section 5],
but, contrary to that work, (i) we allow frozen constraints to be se-
lected and participate in constraint propagation, and (ii) we perform
a closedness check in each SAT call for triangles of frozen non-
universal constraints (should they exist); this is because in our case
the set of frozen constraints is not necessarily consistent as in [10].

The soundness of our algorithm can be seen from mainly Proposi-
tion 4. Indeed, the first two for-loops in FINDPARASCENARIO com-
pute an F -paraconsistent scenario of a QCN that fulfills the three
specified properties. Thus, we know that there exists a para-scenario

P = (V,R) ofN s.t. {(i, j) ∈ V ×V : i < j, |R′(i, j)| > 1} = F .
In the last for-loop, by taking each frozen constraint one by one, we
remove the unnecessary base relations while satisfying the unfrozen
constraints. This clearly leads to a para-scenario.

4.2 An Optimal SAT-based Approach

We first solve the problem FindAllPS (which, of course, subsumes
FindOnePS) using the notion of X-minimal model.

Definition 5 (X-minimal Model) Let ϕ be a propositional formula
and X a subset of propositional variables. An X-minimal model of
ϕ is a model ω of ϕ s.t. there is no model ω′ of ϕ s.t. {p : ω′(p) =
1} ⊊ {p : ω(p) = 1}.

Specifically, we define an encoding for generating the para-
scenarios of a given QCN N = (V,C) based on the notion of X-
minimal model. To this end, we associate two propositional vari-
ables pbij and qbij with each base relation b ∈ B and each pair of
variables i, j ∈ V s.t. i < j. The variables of the form pbij are
used to represent the para-scenarios, whereas those of the form qbij
are used to satisfy Minimality. We also associate with each pair of
variables i and j with i < j a propositional variable rij , which
is used to know whether or not there is more than one base rela-
tion between i and j. Additionally, we use Comp to refer to the set
{(b, b′, b′′) ∈ B× B× B : b ∈ b′ ⋄ b′′ }.

Our first formula guarantees the satisfaction of Paraconsistency:∧
i,j∈V,i<j

(
∨

b∈C(i,j)

pbij) (6)

The second formula is used to satisfy Closedness:∧
i,j,k∈V,i<j<k

∨
(b,b′,b′′)∈Comp

(pbik ∧ pb
′

ij ∧ pb
′′

jk ) (7)

The following formula allows us to identify the pairs of variables
that involve more than one base relation; if rij is false, it indicates
that the corresponding relation is not paraconsistent and consists of
only one base relation:∧

i,j∈V,i<j

∧
b∈C(i,j),b′∈B,b̸=b′

(pbij ∧ pb
′

ij → rij) (8)

Through the notion of X-minimal model, the formula presented
below ensures Minimality by minimizing the variables assigned 1
among the variables of the form qbij :∧

i,j∈V,i<j

∧
b∈B

(pbij ∧ rij → qbij) (9)

The following two formulas allows us to take into account the
bounds on the paraconsistency degree and the paraconsistency width
of the found para-scenarios, respectively:∑

i,j∈V,i<j

rij ≤ α (10)

∑
b∈B

pbij ≤ β for every i, j ∈ V, i < j (11)

Let us note that the subformulas of the form
∑n

i=1 xi ≤ m corre-
spond to the well-known cardinality constraints. Various polynomial
encodings of these constraints into propositional formulas have been
proposed in the literature (e.g., see [34]).

We use Enc1(N , α, β) to denote the formula that corresponds to
the conjunction of Formulas (6)–(11).



Algorithm 2: GREEDYREPAIR

Data: A QCNN = (V,C)
Result: A consistent QCNN ′ withN ′ ⊇ N

1 N ′ ← N ;
2 (i, j)← SAT (N ′) ; // (i, j) with i < j for a

violated constraint N ′[i, j], if it exists
3 if ∄(i, j) then returnN ′;
4 repairs← {(i, j)} ;
5 while true do
6 Let (i, j) ∈ repairs;
7 N ′[i, j]← B ;
8 (i′, j′)← SAT (N ′);
9 if ∄(i′, j′) then returnN ′;

10 ifN ′[i′, j′] ̸= B then repairs← repairs ∪ {(i′, j′)};
11 repairs← repairs ∪ {(i′, k)} ∀k ∈ V with i′ < k s.t.

N ′[i′, k] ̸= B;
12 repairs← repairs ∪ {(k, j′)} ∀k ∈ V with k < j′ s.t.

N ′[k, j′] ̸= B;
13 repairs← repairs \ {(i, j)};

Proposition 5 LetN = (V,C) be a QCN. Then, ω is an X-minimal
model of Enc1(N ), with X = {qbij : i, j ∈ V with i < j, b ∈ B},
iff P = (V,R) is a para-scenario of N that satisfies ∆(P) ≤ α
and W (P) ≤ β, where R is defined as follows: R(i, i) = id for
every i ∈ V ; and R(i, j) =

∧
{b : ω(pbij) = 1} and R(j, i) =

(R(i, j))−1 for all i, j ∈ V with i < j.

For computing one or all X-minimal models, one can use the al-
gorithms proposed in [3].

Now, to solve the optimization problems MinimumDegreePS,
MinimumWidthPS, and MinimumBaseRelPS, we need to use Par-
tial MaxSAT.

We use Enc2(N , β) to denote our encoding for solving
MinimumDegreePS. The hard clauses of this encoding come from
the formulas (6)− (8) and (11), and the soft clauses are simply the
unit clauses ¬rij for i, j ∈ V with i < j.

Our encoding for solving MinimumBaseRelPS, denoted
Enc3(N ), is defined in a similar way to Enc2(N , β). Its hard
clauses come from (6)− (9) and the soft clauses are ¬qbij for b ∈ B
and i, j ∈ V with i < j.

It is worth mentioning that our encoding can easily be adapted to
solve the counterparts of the addressed problems that are defined by
considering only strong para-scenarios. Indeed, to restrict the search
to strong para-scenarios, we only need to restrict our encodings to the
base relations occurring in N , i.e., pbij and qbij exists iff b ∈ N [i, j].
For instance, the formula (7) is replaced with the following formula:∧

i,j,k∈V,i<j<k

∨
(b,b′,b′′)∈Comp’

(pbik ∧ pb
′

ij ∧ pb
′′

jk )

where Comp’ = Comp ∩ (C(i, k)× C(i, j)× C(j, k))

(12)

A solution for MinimumWidthPS can be obtained by using
Enc2(N , α, β) in an incremental or a dichotomic search algorithm
for finding the minimum value of β.

4.3 Experimentation

We evaluate an in-house implementation of the FINDPARASCE-
NARIO algorithm for solving the FindOnePS problem, called Par-
aLog, and an implementation of our SAT encoding for solving the
MinimumBaseRelPS problem using the PySAT toolkit [21] and the

RC2 MaxSAT solver offered there in particular [22]. Regarding Par-
aLog, we test the following three variants:

• ParaLogr, which first repairs a QCN via a call to the greedy Algo-
rithm 2 and then extracts an arbitrary consistent atomic QCN from
the repaired QCN;

• ParaLoga, which considers an arbitrary consistent atomic QCN as
per the description of the FINDPARASCENARIO algorithm;

• and ParaLogb, which serves as a baseline and assumes an imag-
inary consistent atomic QCN with no overlap to the input QCN
(so, all of the constraints of the latter will be initially frozen).

We considered RCC8 and IA networks generated by the standard
A(n,d,l) model [31], used extensively in literature. In short, A(n,d,l)
creates networks of size n, constraint degree d, and an average num-
ber l of base relations per constraint. We considered 100 inconsistent
networks for each average node degree d between 4 and 14 with a
2-degree step and for each of the calculi of RCC8 and IA; hence,
1 200 networks in total. For RCC8 we set n = 30 and l = 4.0, and
for IA, n = 20 and l = 6.5. For this specific range of node degrees
d, the networks of model A(n,d,l) lie within the phase transition re-
gion. The size of the networks is consistent with what has been used
in the literature for similar optimization problems in order to present
results that are as complete as possible [11, 12] (see Table 2).

The experiments were performed on a computer with an In-
tel®Xeon®CPU E5-2697 v3 @ 2.60GHz, 264 GB of RAM, and
the CentOS Linux 7 OS, using one CPU core per network. All code
was implemented and run in Python 3.5; the code is available at:
https://msioutis.gitlab.io/software/

The results for the ParaLog variants and the FindOnePS problem,
along with the metrics used, are qualitatively similar for both RCC8
and IA, and are shown in Table 1 and Figure 3 for the case of IA (the
detailed results for the similar case of RCC8 are omitted to conserve
space). The performance of ParaLogr is superior to the rest of the
variants with respect to every important metric used, especially the
ones regarding the use of the solver as a SAT oracle and the overall
runtime. However, it is interesting to note that all variants are some-
what comparable with regard to the # of extra base relations that they
report, with ParaLogr being only slightly better in general. This indi-
cates that the FINDPARASCENARIO algorithm is good at converging
to a good para-scenario, even though it might take it more time to get
there due to a bad starting point.

Table 1. FindOnePS: Evaluation with IA networks of model A(n = 20,

d, l = 6.5);
min | avg. | median | max # of extra base relations

avg. # of visited nodes/avg. # of oracle calls
.

d ParaLogr ParaLoga ParaLogb

4
1 | 1.03 | 1 | 2

447.56 | 16.28
1 | 1 | 1 | 1

1 051.98 | 34.71
1 | 1.02 | 1 | 2
1 288.9 | 55.98

6
1 | 1.17 | 1 | 5
334.54 / 18.4

1 | 1.23 | 1 | 4
1 402.07 / 48.32

1 | 1.19 | 1 | 4
1 878.38 | 79.62

8
1 | 2.21 | 1 | 12
362.25 / 37.26

1 | 2.2 | 1 | 9
1 532.71 / 69.61

1 | 2.26 | 2 | 10
2 330.78 / 111.39

10
1 | 5.22 | 4 | 23
663.48 / 87.94

1 | 5.45 | 4 | 17
1 772.89 / 112.36

1 | 5.59 | 4 | 19
2 839.26 / 164.35

12
1 | 10.32 | 9 | 29

1 187.11 / 170.52

1 | 10.09 | 9 | 26
2 137.75 / 173.46

1 | 11.73 | 10 | 29
3 628.25 / 248.45

14
5 | 20.23 | 19 | 39
2 541.93 / 331.37

8 | 20.83 | 20 | 37
3 377.04 / 298.73

4 | 23.55 | 23 | 49
5 271.61 / 393.89
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Figure 3. FindOnePS: Runtime for the IA networks of Table 1.

The results for our SAT encoding and the Minimum-BaseRelPS
problem are shown in Table 2; again, they are qualitatively similar
for both RCC8 and IA, but with starker quantitative differences com-
pared to earlier. The results can be contrasted with the ones obtained
by ParaLog as far as paraconsistency levels are concerned, since the
SAT encoding provides the optimum ones. Specifically, the denser
the QCNs (especially for d ≥ 8), the more the performance of Par-
aLog deteriorates with respect to providing low levels of paracon-
sistency, which is in line with our expectations, and good to have it
quantified nonetheless for future research.

Table 2. MinimumBaseRelPS: Evaluation with the concerned RCC8
and IA networks respectively, where a timeout of 1h was used for each

network; min | avg. | max # of extra base relations • avg. SAT
solving time (# of timeouts).

d RC2(RCC8) RC2(IA)

4 1 | 1.01 | 2 • 15.44s (0) 1 | 1.0 | 1 • 3.47s (0)

6 1 | 1.04 | 2 • 22.70s (0) 1 | 1.01 | 2 • 11.76s (0)

8 1 | 1.22 | 5 • 29.43s (0) 1 | 1.22 | 3 • 68.26s (1)

10 1 | 1.89 | 6 • 35.67s (0) 1 | 1.93 | 4 • 494.14s (16)

12 1 | 2.9 | 6 • 83.58s (0) 1 | 2.54 | 4 • 1183.81s (59)

14 1 | 4.69 | 8 • 476.44s (10) ? | ? | ? • inf (100)

5 Inconsistency Measurement
One way to exploit the notion of para-scenario is the definition of
inconsistency measures. This is similar to the use of LPm semantics
in the definition of contension inconsistency measure in the case of
propositional knowledge bases [16].

Inconsistency measures are mappings used to quantify the contra-
diction in knowledge bases. Most of the works on inconsistency mea-
surement in the literature use postulate-based approaches to capture
different aspects relating to inconsistency (e.g. [20, 17, 2, 38]). As
far as we know, there are only two studies on inconsistency measure-
ment in qualitative reasoning [13, 33], but they do not offer any in-
consistency measure similar to the contension measure. In the realm
of temporal reasoning, a recent work has extended this measure to
linear temporal logic [14]. Furthermore, independently of qualita-
tive reasoning, [18] introduces measures specifically designed to deal
with inconsistent quantitative spatio-temporal information.

We write R+
∞ for the set of positive real numbers augmented with

a greatest element denoted∞.
Following the approach for defining inconsistency measures intro-

duced in [20, 9, 13], we consider the following definition.

Definition 6 An inconsistency measure is a mapping I : QCNs →
R+

∞ that satisfies the following properties for every QCN N =
(V,C):

• (Consistency) I(N ) = 0 iffN is consistent;
• (Relation Monotonicity) for every QCN N ′ with N ′ ⊆ N ,

I(N ) ≤ I(N ′).
• (Variable Monotonicity) for every V ′ ⊆ V , I(N↓V ′) ≤ I(N ′).

The inconsistency measures that we introduce are defined as fol-
lows:

• Iβ1 (N ) = min{∆(P) : P ∈ PSes(N ),W (P) ≤ β}
• Iβ2 (N ) = min{|P!| : P ∈ PSes(N ),W (P) ≤ β}
where PSes(N ) denotes the set of para-scenarios for N and
min ∅ =∞. One can easily see that similar inconsistency measures
can be defined by involving only strong para-scenarios.

In the following proposition, we show that our measures satisfy
the desired three properties described in Definition 6.

Proposition 6 The functions Iβ1 and Iβ2 are inconsistency measures.

Proof. We only consider the case of Iβ1 , the case Iβ2 being similar.
Clearly, for every P ∈ PSes(N ), 0 ≤ ∆(P) ≤ n(n − 1)/2
holds, and it ensues that 0 ≤ Iβ1 (N ) ≤ 1. Moreover, for every
P ∈ PSes(N ), we have ∆(N ) = 0 iff P is a classical scenario.
Thus, we obtain Iβ1 (N ) = 0 iff N is consistent: Iβ1 satisfies
Consistency. Let us now show that Iβ1 satisfies Relation Mono-
tonicity. Let N and N ′ be two QCNs s.t. N ′ ⊆ N If there is
no para-scenario P ′ of N s.t. W (P ′) ≤ β, then Iβ1 (N ′) = 1,
which yields I(N ) ≤ I(N ′). Otherwise, let P ′ be a para-scenario
of N ′ s.t. Iβ1 (N ′) = ∆(P ′)/(n(n − 1)/2). Then P satisfies
Properties 1-4 in Definition 2 for N . Thus, using Minimality,
there exists a para-scenario P of N s.t. ∆(P) ≤ ∆(P ′). Conse-
quently, I(N ) ≤ I(N ′) holds. Variable Monotonicity is mainly a
consequence of the fact that for every para-scenario P of N , the
restriction of P to any subset of variables satisfies Properties 1-4 of
para-scenarios. ⊣

6 Conclusion and Perspectives
In this paper we have studied a paraconsistency-related approach for
inconsistency handling in Qualitative Spatio-Temporal Reasoning.
This approach is based on a novel notion called paraconsistent sce-
nario (para-scenario for short), which can be seen as a generalization
of the standard notion of scenario by allowing for the existence of
multiple base relations between two variables. We have described
several interesting theoretical properties of this notion and shown
how it can be relevant for inconsistency measurement. We have fi-
nally provided and evaluated two distinct open-source approaches for
solving the problem of para-scenario computation and other related
problems, viz., a constraint freezing-based one and a SAT-based one.

There are several perspectives for future work. Among them, we
first mention the study of paraconsistent consequence relations based
on para-scenarios, cf. [6, 8]. Additionally, we intend to consider other
paraconsistency-related approaches in QSTR. Future work also in-
cludes the use of such approaches for measuring inconsistency. Fur-
ther, there is much room for improvement regarding the scalability of
the offered tools via, e.g., designing search heuristics tailored to this
problem and providing more compact SAT encodings, cf. [35]. Fi-
nally, we would like to explore the use of Answer Set Programming,
which has provided very promising results with regard to inconsis-
tency handling in the case of propositional knowledge bases [24, 23].
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