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Abstract. TheRCC8 language is a widely-studied formalism for describing topo-
logical arrangements of spatial regions. Two fundamental reasoning problems
that are associated with RCC8 are the problems of satisfiability and realization.
Given a qualitative constraint network (QCN) of RCC8, the satisfiability problem
is deciding whether it is possible to assign regions to the spatial variables of the
QCN in such a way that all of its constraints are satisfied (solution). The real-
ization problem is producing an actual spatial model that can serve as a solution.
Researchers in RCC8 focus either on symbolically checking the satisfiability of
a QCN or on presenting a method to realize (valuate) a satisfiable QCN. To the
best of our knowledge, a combination of those two lines of research has not been
considered in the literature in a unified and homogeneous approach, as the first
line deals with native constraint-based methods, and the second one with rich
mathematical structures that are difficult to implement. In this article, we com-
bine the two aforementioned lines of research and explore the opportunities that
surface by interrelating the corresponding reasoning problems, viz., the problems
of satisfiability and realization. We restrict ourselves to QCNs that, when sat-
isfiable, are realizable with rectangles. In particular, we propose an incremental
SAT-based approach for providing a framework that reasons about the RCC8 lan-
guage in a counterexample-guided manner. The incrementality of our approach
also avoids the usual blow-up and the lack of scalability in SAT-based encodings.
Specifically, our SAT-translation is parsimonious, i.e, constraints are added incre-
mentally in a manner that guides the embedded SAT-solver and forbids it to find
the same counter-example twice. We experimentally evaluated our approach and
studied its scalability against state-of-the-art solvers for reasoning about RCC8
relations using a varied dataset of instances. The approach scales up and is com-
petitive with the state of the art for the considered benchmarks.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in Ar-
tificial Intelligence, and in particular in Knowledge Representation & Reasoning, that
deals with the fundamental cognitive concepts of space and time in an abstract, qual-
itative, and human-like manner. By way of illustration, in natural language, one uses
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Fig. 1. Illustration of the base RCC8 relations

expressions such as inside, before, and north of to spatially or temporally relate one ob-
ject with another object or oneself, without resorting to providing quantitative informa-
tion about these entities. Formally, QSTR restricts the vocabulary of rich mathematical
theories that deal with spatial and temporal entities to simple qualitative constraint lan-
guages. Thus, QSTR provides a concise framework that allows inexpensive reasoning
about entities located in space and time. This framework boosts research and applica-
tions to a plethora of areas and domains that include, but are not limited to, ambient
intelligence, dynamic GIS, cognitive robotics, spatio-temporal design, and qualitative
model generation from video [1,2,3,4].

Regarding qualitative spatial reasoning, Randell et al. developed in [5] one of the
most well-known and dominant spatial calculi in QSTR, viz., the Region Connection
Calculus (RCC). It studies the different relations that can be defined between regions in
some topological space; these relations are based on the primitive relation of connec-
tion. For example, the relation disconnected between two regions X and Y suggests that
none of the points of region X connects with a point of region Y , and vice versa. Two
fragments ofRCC, namely,RCC8 andRCC5 (a sub-language ofRCC8 where no signif-
icance is attached to boundaries of regions), have been used in several real-life applica-
tions. In particular, Bouzy in [6] used RCC8 in programming the Go game, Lattner et al.
in [7] used RCC5 to set up assistance systems in intelligent vehicles, Heintz et al. in [8]
used RCC8 in the domain of autonomous unmanned aircraft systems (UAS), and Ran-
dell et al. in [9] used RCC8 to correct segmentation errors for images of hematoxylin
and eosin (H&E)-stained human carcinoma cell line cultures. Other typical applications
of RCC involve robot navigation, high level vision, and natural language processing [2].
RCC8 (which will be the focus of this paper) is based on the following eight relations:
equals (EQ), partially overlaps (PO), externally connected (EC), disconnected (DC),
tangential proper part (TPP) and its inverse (TPP−1), and non-tangential proper part
(NTPP) and its inverse (NTPP−1). These spatial relations are illustrated in Fig. 1.

Given a qualitative constraint network (QCN) of RCC8, we are particularly inter-
ested in its satisfiability problem, which is the problem of deciding if there exists a
spatial interpretation of the variables of the QCN that satisfies its constraints. The satis-
fiability problem for RCC8 (and RCC5) is NP-complete [10]. Once a QCN of RCC8 is
known to be satisfiable, thus having only one relation at each edge without any choice
possible, one typically deals with the realization problem in order to produce an ac-



tual spatial model that can serve as a solution, which is a tractable problem (see [11]).
Other fundamental reasoning problems include the minimal labeling (or deductive clo-
sure) problem and the redundancy problem [12]. The minimal labeling problem is the
problem of finding the strongest implied constraints of the QCN, and the redundancy
problem is the problem of determining if a given constraint in the QCN is entailed by
the rest of the network (that constraint being called redundant, as its removal does not
change the solution set of the QCN). The problems of redundancy, minimal labeling,
and satisfiability are all equivalent under polynomial Turing reductions [13].

Research in RCC8 usually focuses either on symbolically checking the satisfiability
of a QCN or on presenting a method to realize (valuate) a satisfiable QCN. To the best
of our knowledge, combining those two lines of research in an interrelating manner
has not been considered in the literature, as the first line deals with native constraint-
based methods, and the second one with rich mathematical structures that are difficult
to implement. In this paper, we bind those two lines of research together in a unified
and homogeneous approach by means of an incremental SAT-based technique known
as CEGAR, which stands for Counter-Example Guided Abstraction Refinement [14].
The idea is as follows: instead of creating an equisatisfiable propositional formula as
per the state of the art [15], we generate an under-approximation formula (a formula
which is under-constrained, also called relaxation in other domains). Meaning, if an
under-approximation is unsatisfiable, then by construction the original formula is un-
satisfiable; otherwise, the SAT solver outputs a model that can then be checked. It could
be the case that the approach is lucky and the model of the under-approximation is also
a model of the original formula, in which case the problem is decided. In general, the
under-approximation is constantly refined, i.e., it comes closer to the original formula
and, in the worst-case, it will eventually become equisatisfiable with the original for-
mula after a finite number of refinements. Notably, CEGAR has been successfully pro-
posed in many problems such as Bounded Model Checking [14], Satisfiability Modulo
Theory [16], Planning [17], the Hamiltonian Cycle Problem [18] and more recently
within Quantified Boolean Formulas (QBF) [19,20].

The idea of abstracting decision problems with a CEGAR-under approach is well
known in the SAT-community. However, the CP/OR community is probably more fa-
miliar with the Logic-based Benders decomposition (LBBD) [21], which can be viewed
as the CEGAR-under approach for optimization. It is used in many domains where we
want to abstract and then solve an optimization problem. LBBD approaches are orders
of magnitude faster than state-of-the-art MIP for all problems where it has been ap-
plied [22,23,24], just as their CEGAR counterparts are against a direct encoding. One
could also see the CEGAR-under approach as a kind of Lazy-SMT approach [25,26],
where the problem-specific knowledge that is extracted from an abstraction is used to
guide the refinement process, instead of a theory solver.

2 Preliminaries

In this section, we will assume that the reader is familiar with basic notions from graph
theory and topology such as chordal graph, open and closed sets, the interior and closure
operators and with basic notions from geometry.



2.1 Region Connection Calculus

The Region Connection Calculus (RCC) [5] is a first order theory for representing and
reasoning about mereotopological information between regions of some topological
space. Its relations are based on a connectedness relation C. In particular, using C, a
set of binary relations is defined. From this set, the RCC8 fragment can be extracted:
{ DC, EC, PO, EQ, TPP, NTPP, TPP−1, NTPP−1 }. These eight ones are jointly
exhaustive and pairwise disjoint, meaning that only one of those can hold between any
two regions. As noted in the introduction, this fragment (illustrated in Fig.1), will be
referred to simply as RCC8 for convenience.

We can view regions in RCC as non-empty regular subsets of some topological
space that do not have to be internally connected and do not have a particular dimension,
but that are usually required to be closed [27] (i.e., the subsets equal the closure of their
respective interiors). Let R(X) denote the set of all regions of some topological spaceX.
Then, we can have the following interpretation for the basic relations of RCC8, where
Ri denotes the interpretation of R for two instantiated region variables. Semantically,
binary relation R contains all the possible instantiations of its pair of region variables.

Definition 1 (Set Notation of RCC8). Given two regions X and Y in R(X), then:1

EQi(X,Y) iff X = Y

DCi(X,Y) iff X ∩ Y = ∅

ECi(X,Y) iff X̊ ∩ Y̊ = ∅, X ∩ Y , ∅

POi(X,Y) iff X̊ ∩ Y̊,∅, X * Y,Y * X

TPPi(X,Y) iff X ⊂ Y, X * Y̊

TPP−1
i (X,Y) iff Y ⊂ X,Y * X̊

NTPPi(X,Y) iff X ⊂ Y̊

NTPP−1
i (X,Y) iff Y ⊂ X̊

Given two basic relations R and S of RCC8 that involve the pair of variables (i, j)
and ( j, k) respectively, the weak composition of R and S, denoted by CT(R,S), yields
the strongest relation of RCC8 that contains R ◦ S, i.e., it yields the smallest set of basic
relations such that, each of which can be satisfied by the instantiated variables i and k
for some possible instantiation of variables i, j, k with respect to relations R and S. We
remind the following definition of the weak composition operation from [28]:

Definition 2 (Weak Composition CT).
For two basic relations R, S of RCC8, their weak composition CT(R,S) is defined to

be the smallest subset {T1,T2, . . . ,Tn} of 2RCC8 such that Ti ∩ (R ◦ S) , ∅ ∀i ∈ {1, . . . , n}.

The result of the weak composition operation for each possible pair of basic rela-
tions of RCC8 is provided by a dedicated table, called the weak composition table [29]

1 Å denotes the interior of A
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Table 1. The RCC8 CT, where * specifies the universal relation

(RCC8 CT for short), shown in Table 1. The weak composition operation for two gen-
eral RCC8 relations can be computed by unifying the results (sets) of the weak com-
position operations for all ordered pairs of basic relations that involve a basic relation
from the first general relation and a basic relation from the second one. Henceforward,
a general RCC8 relation will be represented by the set of its basic relations.

In order to concretely capture the qualitative spatial information that is entailed by
a knowledge base of RCC8 relations, we will use the notion of a Qualitative Constraint
Network (QCN), defined as follows:

Definition 3 (Qualitative Constraint Networks (QCN)). A QCN of RCC8 is a pair
N = (V,C) where V is a non-empty finite set of variables (each one corresponding to a
region), and C is a mapping associating a relation C(v, v′) ∈ 2RCC8 with each pair (v, v′)
of V × V. Further, mapping C is such that C(v, v) ⊆ {EQ} and C(v, v′) = (C(v′, v))−1.

Concerning a QCN N = (V,C), we have the following definitions: An instantiation of
V is a mapping σ defined from V to the domain R(X). A solution (realization) σ of
N is an instantiation of V such that for every pair (v, v′) of variables in V , (σ(v), σ(v′))
satisfies C(v, v′), i.e., there exists a basic relation b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b.
N is satisfiable if and only if it admits a solution. The constraint graph of a QCN N
is the graph (V, E), denoted by GN , for which we have that {v, v′} ∈ E if and only if
C(v, v′) , RCC8 (i.e., C(v, v′) corresponds to a non-universal relation) and v , v′.

In this article, we restrict ourselves to QCNs that, when satisfiable, are realizable
with rectangles. As pointed out in [30, Example 1], there exist QCNs for which it is not
possible to find a rectangular realization using a single rectangle for a region (though
it is still possible if more rectangles per region are used). However, for hard-to-solve
instances, which concern us here and which typically involve a lot of indefinite knowl-
edge and, hence, are flexible in terms of realizing them, it is rarely (if ever) the case that
a rectangular realization will not be attainable for a satisfiable QCN (see Section 5).



2.2 Propositional Logic

The Propositional Logic will be denoted by CPL. It is the logic of reasoning about what
is True and what is False. The syntax of CPL can be formally defined as follows:

Definition 4 (Language of the Propositional Logic). Let P be a countably infinite
non-empty set of propositional variables. The language of propositional logic (denoted
by CPL) is the set of formulas containing P, closed under the set of propositional con-
nectives {¬,∧}.

Without loss of generality, we will assume all the formulas of CPL to be in Conjunc-
tive Normal Form (CNF) because any formula can be translated into an equisatisfiable
CNF formula using the Tseitin algorithm [31]. Regarding the semantics aspect of the
propositional logic, the notion of interpretation is important. It is defined as follows:

Definition 5 (Interpretation). An interpretation is a set of valuations of propositional
variables. Formally, it is a mapping P→ {True, False}.

An interpretation is a model of φ if φ is true for that interpretation. If a formula φ has
at least one modelM, we will say that this formula is satisfiable;M |= φ will denote
thatM satisfies φ. Formally, the satisfiability relation is defined as follows:

Definition 6 (Satisfaction Relation in CPL). The relation |= between Interpretations
M and formulas φ in CPL is recursively defined as follows:

M |= p iff p ∈ M

M |= ¬φ iff M 6|= φ

M |= φ1 ∧ φ2 iff M |= φ1 andM |= φ2

M |= φ1 ∨ φ2 iff M |= φ1 orM |= φ2

If a formula is satisfiable by any interpretation, we will say that this formula is valid;
in that case the formula is a tautology and we will denote it by |= φ. If a formula is false
for any interpretation, we will say that this formula is unsatisfiable.

2.3 CEGAR preliminaries

Counter-Example-Guided Abstraction Refinement, CEGAR for short, is an incremental
way to decide the satisfiability of formulas in classical propositional logic (CPL). It has
been originally designed for model checking [14], i.e., to answer questions such as
“Does S |= P hold?” or, likewise, “Is S ∧ ¬P unsatisfiable?”, where S describes a
system and P a property. In such highly structured problems, it is often the case that
only a small part of the formula is needed to answer the question. The keystone of
CEGAR is to replace φ = S ∧ ¬P by an abstraction φ′, where φ′ should be easier to
solve in practice than φ. There are two kinds of abstractions: an over-abstraction (resp.
under-abstraction) of φ is a formula φ̂ (resp. φ̌) such that φ̂ |= φ (resp. φ |= φ̌) holds.
φ̂ has at most as many models as φ and φ̌ has at least as many models as φ. Usually,
φ is in CNF. An illustration of a CEGAR approach using under-abstraction is given in
Fig. 2. To be sound, complete, and to terminate, a CEGAR approach has to verify the
following assumptions (proofs can be obtained from [32, Theo. 1,2 and 3]):



cegar(φ) ψ ← φ̌

solve(ψ)UNSAT check(λ, φ) SAT

ψ ← refine(ψ)

unsat
sat,λ yes

no

Fig. 2. The CEGAR framework with under-abstraction

1. “solve” is sound, complete, and terminates;
2. if φ̌ is unsatisfiable, then φ is unsatisfiable;
3. “check(λ, φ)” returns true if λ is a model of φ;
4. ∃ n ∈ N such that refinen(φ̌) is equisatisfiable with φ.

As we will use a SAT solver in our approach, we will suppose that the embed-
ded SAT solver is well coded and that it is sound, complete, and terminates, so that
CEGAR-under Assumption (1) is satisfied. Having introduced the notions needed to
understand the contributions, we can proceed to the first of them, which is encoding
RCC8 into propositional logic in such a convenient way that it allows us to easily verify
the CEGAR-under Assumptions (2) and (4).

3 Encoding RCC8 Into SAT

To obtain a SAT encoding of the RCC8 satisfiability problem, we need to define how
to translate the different possible relations. We will represent a region i as a set of four
variables {x−i , y

−
i , x

+
i , y

+
i } as illustrated in Fig. 3.
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Fig. 3. Illustration of how a region is represented

All the possibles cases for every relation may be found and proved, along with their
link with Point Algebra, in [33, Table 6.2]. From this encoding, we can then propose
the following SAT encoding which translates all the edges possible:



Definition 7 (SAT Translation – tr). For all relations R in all the given edges (i, j) of
the input problem N we have:

tr(N) :=
∧

∀(R,i, j)∈N

tr(R, i, j)

Then from [33, Table 6.2], if we want to translate for example the relation EC
between nodes i and j (the procedure is similar for other RCC8 relations), we will have
the following SAT encoding as per Def. 7:

Definition 8 (SAT Translation of EC on the edge i-j).

tr(EC, i, j) := EC(i, j)→ (ECr(i, j) ∨ ECl(i, j) ∨ ECu(i, j) ∨ ECd(i, j))

From this definition, we can see that the relation EC for the edge (i, j) can only be
satisfied by 4 different cases, viz., left, right, up, down. Each case is defined as follows:

ECr(i, j)→((x−i < x−j ) ∧ (x−i < x+
j )) ∧

((x−i = x+
j ) ∧ (x+

i < x+
j )) ∧

((y−i < y+
j ) ∨ (y−i < y+

j )) ∧

((y+
i < y−j ) ∨ (y+

i < y−j ))

ECu(i, j)→((x−i < x−j ) ∨ (x−i = x−j )) ∧

((x−i > x+
j ) ∨ (x−i = x+

j )) ∧

((y−i < y−j ) ∧ (y−i < y+
i )) ∧

((y+
i = y−j ) ∧ (y+

i < y+
j ))

ECl(i, j)→((x−i > x−j ) ∧ (x−i = x+
j )) ∧

((x−i > x+
j ) ∧ (x+

i > x+
j )) ∧

((y−i < y+
j ) ∨ (y−i < y+

j )) ∧

((y+
i < y−j ) ∨ (y+

i < y−j ))

ECd(i, j)→((x−i < x−j ) ∨ (x−i = x−j )) ∧

((x−i > x+
j ) ∨ (x−i = x+

j )) ∧

((y−i > y−j ) ∧ (y−i = y+
i )) ∧

((y+
i > y−j ) ∧ (y+

i > y+
j ))

The inverse relations are defined as usual: TPP−1(i, j) = TPP( j, i) and NTPP−1(i, j) =

NTPP( j, i). For every node in the QCN with N nodes that we want to solve, we will add
the following constraint assuring that all the point coordinates are in good order:

N∧
i=1

((x−i < x+
i ) ∧ (y−i < y+

i ))

We want to point out that, if the propositional variable (A < B) is true, then the variables
(A > B) and (A = B) are false. To express this, we use the following clauses:

AMO :=
∧

a∈{x,y}

∧
c1∈{−,+}

∧
c2∈{−,+}

N∧
i=1

N∧
j=1


((ac1

i < ac2
j ) ∨ (ac1

i = ac2
j ) ∨ (ac1

i > ac2
j )) ∧

(¬(ac1
i < ac2

j ) ∨ ¬(ac1
i = ac2

j )) ∧
(¬(ac1

i < ac2
j ) ∨ ¬(ac1

i > ac2
j )) ∧

(¬(ac1
i = ac2

j ) ∨ ¬(ac1
i > ac2

j )) ∧

 (1)

Thanks to Equation 1 (AMO – At Most One), we can thus replace, for example, in EC
(i,j) (u), (x−i < x+

j ) ∨ (x−i = x+
j ) by ¬(x−i > x+

j ). The same applies for all the disjunctions



in [33, Table 6.2]. Last but not least, we want to ensure the transitivity of the relations on
all the possible coordinates; this will have the biggest impact on the size of the generated
CNF. For all the triplets (i,j,k) in a triangulation (chordal completion of the constraint
graph of an input QCN), we must add the following rules for every combination (c1, c2)
that can be assured by transitivity ∈ {(−,−), (−,+), (+,−), (+,+)} and for both axis a ∈
{x, y}:

transitivity(i, j, k) :=
∧


((ac1
i = ac1

j ) ∧ (ac1
j = ac2

k ))→ (ac1
i = ac2

k )
((ac1

i < ac1
j ) ∧ ¬(ac1

j > ac2
k ))→ (ac1

i < ac2
k )

((ac1
i > ac1

j ) ∧ ¬(ac1
j < ac2

k ))→ (ac1
i > ac2

k )
((ac1

j > ac2
k ) ∧ ¬(ac1

i < ac1
j ))→ (ac1

i > ac2
k )

((ac1
j < ac2

k ) ∧ ¬(ac1
i > ac1

j ))→ (ac1
i < ac2

k )


We will not enter the details of how a graph can be made chordal; it is a standard

procedure and we redirect the reader to [34] for more information about how it can be
done. It is worth noting that triangulating a graph can take linear time in the size of
the output chordal graph. Before moving to the CEGAR part, we need to prove that the
encoding we designed is sound and complete.

Theorem 1. Let N = (V,C) be a QCN of RCC8, and G a chordal supergraph of the
constraint graph of N . If toSAT(N) is defined as follows:

toSAT(N) := tr(N)∧AMO∧
N∧

i=1

((x−i < x+
i )∧ (y−i < y+

i ))∧
∧

(i, j,k)∈G

transitivity(i, j, k)

then toSAT(N) is equisatisfiable with N .

Proof. We need to show that toSAT(N) is equisatisfiable withN . In order to do so, we

split toSAT(N) in two parts. The first one (tr(N) ∧ AMO ∧
N∧

i=1
((x−i < x+

i ) ∧ (y−i < y+
i )))

is obviously the input problem; this representation comes from [33] and the relation
with Point Algebra (PA). As proven in [35], it is enough to check the path consis-
tency with respect to the chordal graph, so the real difficulty of this proof is demon-
strating why by adding a finite number of transitivity constraints does the translation
become equisatisfiable. The intuition is that, each time we add a transitivity constraint
transitivity(i, j, k), we force the SAT solver to find only relations in this triangle
which match the weak composition table CT (Table 1). For this purpose, we need to
enumerate all the cases pertaining to the CT and show that, each time, the transitivity
constraints force the solver to find only relations allowed by the CT. Let us consider
the following case: (i,j) has the relation EQ and (j,k) has the relation NTPP. Then
by the CT, the transitivity constraints should force to find NTPP on (i,k). Because of
what we assume true, we have the following propositional variables assigned to true:
(x−i = x−j ), (y−i = y−j ), (x−i < x+

j ), (y−i < y+
j ), (x+

i > x−j ), (y+
i > y−j ), (x+

i = x+
j ), (y+

i = y+
j )

(which encodes EQ(i, j)) and (x−j > x−k ), (y−j > y−k ), (x−j < x−k ), (y−j < y+
k ), (x−j >

x+
k ), (y−j > y−k ), (x−j < x+

k ), (y−j < y+
k ) (which encodes NTPP( j, k)). Then, we want to



obtain the following:

(1.a) (x−i > x−k ) (1.b) (y−i > y−k )
(2.a) (x−j < x−k ) (2.b) (y−j < y+

k )

(3.a) (x−j > x+
k ) (3.b) (y−j > y−k )

(4.a) (x−j < x+
k ) (4.b) (y−j < y+

k )

1.a We have (x−i = x−j ) and (x−j > x−k ). Due to the transitivity constraint transitivity(i, j, k)
at one point, we add the clause: ((x−i = x−j ) ∧ ¬(x−j < x−k ) → (x−i > x−k )). Then, be-
cause of AMO, we have ((x−j > x−k )→ ¬(x−j < x−k )). Thus we have (x−i > x−k ).

2.a We have (x−i = x−j ) and (x−j < x+
k ). Due to the transitivity constraint transitivity(i, j, k)

at one point, we add the clause: (¬(x−i < x−j ) ∧ (x−j < x+
k ) → (x−i < x+

k )). Then, be-
cause of AMO, we have ((x−i = x−j )→ ¬(x−i < x−j )). Thus we have (x−i < x+

k ).
3.a We have (x+

i = x+
j ) and (x+

j > x−k ). Due to the transitivity constraint transitivity(i, j, k)
at one point, we add the clause: (¬(x+

i < x+
j ) ∧ (x+

j > x−k ) → (x+
i > x−k )). Then, be-

cause of AMO, we have ((x+
i = x+

j )→ ¬(x+
i < x+

j )). Thus we have (x+
i > x−k ).

4.a We have (x+
i = x+

j ) and (x+
j < x+

k ). Due to the transitivity constraint transitivity(i, j, k)
at one point, we add the clause: (¬(x+

i > x+
j ) ∧ (x+

j < x+
k ) → (x+

i > x+
k )). Then, be-

cause of AMO, we have ((x+
i = x+

j )→ ¬(x+
i > x+

j )). Thus we have (x+
i < x+

k ).

The cases on the y-axis (1.b, 2.b, 3.b and 4.b) are similar to the one on the x-axis.
From this point forward, we just have to enumerate in that way all the possible cases
pertaining to the weak composition table. This would be extremely space-consuming
so we leave it as exercise for the reader. ut

We just saw that if we encode all the transitivity cases for every triangle in the re-
spective chordal graph in accordance with our description, we obtain an equisatisfiable
SAT encoding. However, when we take a closer look at what can be time-consuming,
function transitivity is exactly what we want to avoid at any cost due to the size of
its encoding, and that is why we propose a CEGAR approach to circumvent it.

4 Translating parsimoniously the transitivity constraints

As we explained earlier, the function transitivity can be costly and it hence needs
to be avoided if we want to have a competitive approach. This is exactly the hypothesis
on which our CEGAR approach rests. Let us take the example illustrated in Fig. 4, a
RCC8 problem with 5 nodes and 5 relations given as input (the relations are shown
in black in Fig. 4). Thus, when we translate this problem into a propositional logic
formula, we obtain the following rules:

under(φ) = tr(EC, 0, 1) ∧ tr(EC, 1, 2) ∧ tr(EC, 2, 3) ∧ tr(EC, 0, 1)
∧ tr(EQ, 3, 4) ∧ tr(DC, 3, 4) ∧ tr(EQ, 4, 0) ∧ tr(DC, 4, 0)
∧ EC0,1 ∧ EC1,2 ∧ EC2,3 ∧ (EQ3,4 ∨ DC3,4) ∧ (EQ4,0 ∨ DC4,0)

∧ AMO ∧
4∧

i=0

((x−i < x+
i ) ∧ (y−i < y+

i ))



Theorem 2. Let φ be a QCN, then under(φ) is an under-abstraction of φ (i.e., it has
at least the same amount of models).

01

2

3

4
EC

EC

EC

EQ ∨ DC

EQ ∨ DC

*

*

Fig. 4. An example of the constraint graph of an RCC8 problem φ, (the labels denote the corre-
sponding RCC8 relations), in red the edges added to make the graph chordal

Proof. under(φ) is a subset of clauses of the equisatisfiable encoding (Thm. 1). Thus
if under(φ) is unsatisfiable, then φ is also unsatisfiable by definition of the logical con-
junction.

At this point, the translation is an under-abstraction of the original problem, i.e., if it
is unsatisfiable, then for sure the problem is unsatisfiable, but a model of this translation
does not imply that it exists a model for the original problem. The CEGAR Assump-
tion (2) is respected by construction of the translation, to obtain this equisatisfiability
we need to have:

toSAT(φ) = under(φ)
∧ transitivity(0, 1, 2)
∧ transitivity(0, 2, 3)
∧ transitivity(0, 3, 4)

As the number of triangles in a chordal graph is bounded by a number N (worst case:
N = |V |3 when the graph is complete), we can now easily see that after we translate the
transitivity of each triangle (an operation that we will call a refinement in what follows),
we can refine the problem N times and obtain an equisatisfiable formula. This allows
us to respect the CEGAR Assumption (4).

Concerning the CEGAR Assumption (3), we need to find a way to check efficiently
if a returned model of the under-abstraction is also a model of the original formula.
For this purpose, we used the algorithm Directional Path Consistency (DPC) presented
in [36,37,38]. Our function check performs the model-checking and returns the triangle
which results in the assignment of the empty set to some relation. From this point for-
ward, if the checker returns the triangle (i,j,k) and we consequently add the transitivity
constraint transitivity(i, j, k) in the propositional formula, then it is impossible for
the checker to return once again the same triangle. As discussed earlier, the maximum



Algorithm 1: CEGAR-RCC8(N)
Data: N=(V,C) with n variables
Result: A realization of N if it is possible to obtain one, UNSAT otherwise

1 G ← (V, E ← E(GN ));
2 setOfTriangles← Chordal(G);
3 transitivity← >;
4 ψ← under(N) ; // under-abstraction step
5 while (setOfTriangle , ∅) do
6 λ← SAT-Solver(ψ ∧ transitivity) ; // solve step
7 if (λ = ⊥) then return UNSAT ;
8 res← check(λ,N) ; // check step
9 if (res = null) then return interpret(λ) ;

10 else
11 setOfTriangle.remove(res);
12 transitivity← transitivity ∧transitivity(res) ; // refinement step

13 λ← SAT-Solver(ψ ∧ transitivity) ; // worst case: equisatisfiability
14 if (λ = ⊥) then return UNSAT ;
15 else return interpret(λ) ;

set of transitivity constraints that we need to add is of finite size, at which point we will
have an equisatisfiable formula.

We now have all the pieces to create two different ways to solve the satisfiability
and at the same time the realization problem in RCC8. The first one is by using a
direct encoding (with the function toSAT(N)). The second one is by using a CEGAR
approach for it, like the one presented in Algorithm 1, which in the worst-case (the case
where all the transitivity rules must be considered) will end-up being just a slightly
slower version of the direct encoding; however, this has been experimentally found to
never occur in practice (see Section 5). Moreover, every time we have that the instance
is satisfiable, we also obtain an interpretation of the model returned by the SAT solver.
In other words, we solve the satisfiability and realization problems together.

5 Experimental Results

Now that we have a new SAT encoding and a CEGAR approach for solving the satisfi-
ability and realization problems in RCC8, we want to compare against the state-of-the-
art. For this purpose, we implemented the approach within the solver Churchill2 and we
used Glucose [39,40] as an internal SAT solver. We will compare Churchill in direct-
encoding and CEGAR mode against the state-of-the-art qualitative spatial reasoners for
RCC8, which are GQR [41], Renz-Nebel01 [42], RCC8SAT [15], PPyRCC8 [35], and
Chordal-Phalanx [43]. Each solver is using default settings, except GQR, which is using
the flag “-c horn”. By using the flag “-c horn”, GQR decomposes an RCC8 relation into
horn sub-relations (which is standard behavior for the rest of the solvers), instead of
basic relations; this changes the branching factor from 4 to ∼ 1.4. Moreover, PPyRCC8

2 The name comes from the historical figure who used to also do a lot of CEGAR



Fig. 5. Runtime distribution on the first set Fig. 6. Runtime distribution on the second set

and Chordal-Phalanx are run using PyPy as recommended by their authors to improve
the overall performance. We compare these solvers on four categories of benchmarks.

1. The first set consists of random hard instances that have been generated with:
“gencsp -i 100 -n 100 -d 10 15 0.5 -r nprels”.3 In particular, it con-
sists of 100 instances of 100 nodes for every average degree from 10.0 to 15.0
with a 0.5 step and using only relations that result to NP-completeness (nprels);
thus, a total of 1 100 QCNs were generated.

2. The second set is generated exactly like the first one but with 500 nodes instead of
100 and for a range of d between 10.0 and 20.0, consisting of a total of 2100 QCNs.

3. The third set is the random-scale-free-like-instances [44], which consists of 300
instances, 30 instances for every size from 1 000 to 10 000 nodes with a 1 000 step.
These instances are normal to hard.

4. The fourth set is the random-scale-free-like-np8-instances [44], which consists of
70 instances, 10 for every size from 500 to 3 500 nodes with a 500 step. These
instances are hard to very hard as they are defined solely by nprels.

Regarding sets 3 and 4, scale-free networks are networks whose degree distribution
follows a power law [45]; notably, structured networks have been used extensively in
the recent literature [15,44]. The experiments were run on a cluster of Xeon, 4 cores,
3.3 GHz with CentOS 7.0 with a memory limit of 32GB and a runtime limit of 900
seconds per solver per benchmark. All solvers’ answers were checked by verifying if
all the solvers gave the same output for each benchmark. No discrepancy was found.
This means that the cases where satisfiable QCNs are not realizable with rectangles did
not appear in our datasets.

Regarding Fig. 5 and Fig. 6, which show the runtime distributions of the different
solvers for the first and second set of instances, we can see that Churchill and GQR
are extremely fast to solve the respecting sets. Indeed, it took at most 1.42 seconds for
Churchill to solve the hardest instance of the first set and 10.10 seconds for GQR, and
32.70 seconds on the second set for Churchill. For Churchill, the speed-up is because we
perform in average a small number of CEGAR loops (avg: 8.90 for first set and 11.87

3 The generator comes with the Renz-Nebel01 solver



Table 2. Results on sets 3 (left) and 4 (right)

random-scale-free-like-instances random-scale-free-like-np8-instances

#Nodes (x1000) < 6 6 7 8 9 10 0.5 1 1.5 2 2.5 3 3.5
#Instances 150 30 30 30 30 30 10 10 10 10 10 10 10

Renz-Nebel01
0 0 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - - - -
0 0 0 0 0 0 0 0 0 0 0 0 0

RCC8SAT
(150) (30) (30) (30) (30) (30) (10) (10) (10) (10) (10) (10) (10)

PPyRCC8
134 19 20 21 23 23 10 9 10 8 7 3 3
(14) (8) (7) (7) (7) (4) - - - - (1) (5) (7)
150 30 30 30 30 30 10 10 10 10 10 10 10

Chordal-Phalanx
- - - - - - - - - - - - -

GQR-1500
150 30 30 30 30 30 10 10 9 6 10 8 9

- - - - - - - - - - - - -
0 0 0 0 0 0 0 0 0 0 0 0 0

Churchill Direct
(150) (30) (30) (30) (30) (30) (10) (10) (10) (10) (10) (10) (10)

Churchill CEGAR
150 30 30 18 8 6 10 10 10 10 10 10 10

- - - (10) (20) (24) - - - - - - -

VBS 150 30 30 30 30 30 10 10 10 10 10 10 10

for second set). However, when we take a look at the direct translations (RCC8SAT
and Churchill Direct), 500 nodes is already too much and this blows up the allowed
memory.

Table 2 shows the number of benchmarks solved for sets 3 and 4. The best results
of a given row are presented in bold and the number of benchmarks which cannot be
solved because of lack of memory is provided between parenthesis (if such benchmarks
do not exist a dash is displayed). The line VBS represents the Virtual Best Solver (a
practical upper-bound on the performance achievable by picking the best solver for each
benchmark). On the third set, we can see the scalability of a CEGAR approach against
a direct encoding (Churchill Direct) or via a CP representation. The results are clear,
when the number of nodes is too big, the SAT approaches require too much memory
or too much time for the translation of the problem and, hence, become inefficient. The
bigger the network, the more time Churchill CEGAR spends model-checking the output
of the SAT solver and the more space is required to add transitivity constraints. In some
cases, we just reach the space limit and are unable to solve instances.

On the fourth set, we study the scalability on very hard instances that are of rea-
sonable size. We can see here that SAT solvers still have a hard time with the size of
the input, and that using a CEGAR approach instead of a direct encoding leads to a
huge improvement. Indeed, Churchill CEGAR managed to solve all the instances, but,
unfortunately, it took more time than Chordal-Phalanx to do so in most cases (median:
37.97s for Churchill vs 16.78 for Chordal-Phalanx); however, it was faster in the worst-
case (max: 163.10s for Churchill vs 714.12s for Chordal-Phalanx). This is mainly due
to the fact that model-checking many times, which is typically the case when the net-
work has a size between 2 000 and 3 500 nodes, is time-consuming. In fact, a sum-up
of how the runtime of Churchill is distinguished by Triangulation time, Checking time,



Table 3. Sum-up of times for the three steps in Churchill

Time (s) Triangulation Checking Solving
min med max min med max min med max

first set 0.220 0.390 0.630 0.015 0.030 0.151 0.002 0.003 0.010
second set 3.910 12.910 20.153 0.430 1.170 2.057 0.015 0.030 0.370
third set 8.708 55.96 128.96 7.900 222.3 668.57 0.015 0.860 16.38

fourth set 3.765 21.530 68.230 0.560 24.410 58.950 0.012 0.250 15.73

and Solving time is given in Table 3. When we analyze the results given in Table 3, the
result is clear: when the network is small (first and second sets) the main percentage of
the time is spent in the triangulation of the graph. When the network is big (third and
fourth sets) the main percentage of the time is spent in the Checking time. But in any
case, the SAT solver is not the bottleneck here. For all the results, it is worth remem-
bering that even if we are a little bit slower on sets 3 and 4, we are solving in the same
time the realization problem, i.e., we output a solution for the input problem, not only a
decision about the satisfiability of that problem.

6 Conclusion

In this paper, a new approach for solving the satisfiability and realization problems in
RCC8 using an under-abstraction refinement approach within the CEGAR framework
has been proposed. We showed that our encoding is sound and complete for satisfi-
able QCNs that are realizable with rectangles and we instantiated it within the solver
Churchill. We compared our approach against solvers representing, to the best of our
knowledge, the state-of-the-art for practical RCC8 solving, on a wide range of bench-
marks of different size and difficulty. We concluded that a basic direct-encoding ap-
proach is not competitive at all, because many of the available benchmarks are huge
and require a lot of transitivity constraints in the SAT encoding. However, our CEGAR
approach, mixing SAT and UNSAT shortcuts, outperformed the other solvers on most
of the benchmarks considered.

As future work, seeing Table 3, we could improve the checker. Indeed, one could
think about avoiding checking unmodified sub-graphs twice by flagging some nodes,
i.e., checking only the part which was modified due to the previous assignment. More-
over, to make the approach sound in any case and not just rectangles, one could think
about extending the CEGAR approach into a RECAR one [32] where the over-abstraction
would be to consider more and more complex shapes (points then rectangles then rect-
angles allowing holes, and so on).
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