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Abstract

We introduce and evaluate dynamic branching strategies for solving Quali-
tative Constraint Networks (QCNs), which are networks that are mostly used
to represent and reason about spatial and temporal information via the use of
simple qualitative relations, e.g., a constraint can be “Task A is scheduled after
or during Task C”. In qualitative constraint-based reasoning, the state-of-the-
art approach for tackling a given QCN consists in employing a backtracking
algorithm, where the branching decisions during search are governed by the re-
strictiveness of the possible relations for a given constraint (e.g., after can be
more restrictive than during). In the literature, that restrictiveness is defined
a priori by means of static weights that are precomputed and associated with
the relations of a given calculus, without any regard to the particulars of a
given network instance of that calculus, such as its structure. In this paper,
we address this limitation by proposing heuristics that dynamically associate a
weight with a relation, based on the count of local models (or local scenarios)
that the relation is involved with in a given QCN; these models are local in
that they focus on triples of variables instead of the entire QCN. Therefore, our
approach is adaptive and seeks to make branching decisions that preserve most
of the solutions by determining what proportion of local solutions agree with
that decision. Experimental results with a random and a structured dataset
of QCNs of Interval Algebra show that it is possible to achieve up to 5 times
better performance for structured instances, whilst maintaining non-negligible
gains of around 20% for random ones. Finally, we show that these results can
be further and notably improved via a selection protocol algorithm that aims to
effectively and efficiently synthesize the involved heuristics (static or dynamic)
into an overall better performing meta-heuristic in the phase transition.
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Figure 1: The static weighting scheme in the literature dictates that relation during is less
restrictive than relation after in general for the IA calculus and, hence, during should be
preferred over after in branching decisions [19, Figure 9], but in the above simplified QCN
during cannot appear in any solution; such schemes are defined for other calculi as well [20]

1. Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of
study in AI that deals with the fundamental cognitive concepts of space and time
in a human-like manner, via simple qualitative constraint languages [1, 2]. Such
languages consist of abstract, qualitative, expressions like inside, before, or north5

of to spatially or temporally relate two or more objects to one another, without
involving any quantitative information. Thus, QSTR offers tools for efficiently
automating common-sense spatio-temporal reasoning and, hence, further boosts
research to a plethora of application areas and domains that deal with spatio-
temporal information, such as cognitive robotics [3], deep learning [4], visual10

explanation [5] and sensemaking [6], semantic question-answering [7], qualitative
simulation [8], modal logic [9, 10, 11, 12, 13], temporal diagnosis [14], and stream
reasoning [15, 16].

Qualitative spatial or temporal information may be modeled as a Qualitative
Constraint Network (QCN), which is a network where the vertices correspond to15

spatial or temporal entities, and the arcs are labeled with qualitative spatial or
temporal relations respectively. For instance x ≤ y can be a temporal QCN over
Z. Given a QCN N , the literature is particularly interested in its satisfiability
problem, which is the problem of deciding if there exists a spatial or temporal
interpretation of the variables of N that satisfies its constraints, viz, a solution20

of N . For instance, x = 0 ∧ y = 1 is one of the infinitely many solutions
of the aforementioned QCN, and x < y is the corresponding scenario that
concisely represents all the cases where x is assigned a lesser value than y. In
general, for most widely-adopted qualitative calculi the satisfiability problem is
NP-complete [17]. In the sequel, we will be using Interval Algebra (IA) [18] as25

an illustrative example of a qualitative calculus.

Motivation & Contribution. The state-of-the-art constraint-based approach
for tackling a given QCN consists in employing a backtracking algorithm, where
each branching decision during search is guided by the restrictiveness of the
possible relations for a given constraint. Currently, that restrictiveness is defined30

a priori by means of entirely precomputed static weights that are associated
with the relations of a given calculus. That static strategy has two major
problems: it assumes a uniform use of relations in QCNs (in the sense that

2



weights are computed by equally considering all the relations of a calculus); and
it does not exploit any structure that may exist in QCNs (a relation that is35

used to form more than one constraints in a given QCN, which is typically the
case, may exhibit different levels of restrictiveness among those constraints). A
simple example of how this scheme can be problematic is detailed in Figure 1.
In this paper, we address this limitation by proposing a dynamic branching
mechanism via heuristics that dynamically associate a weight with a relation40

during search, based on the count of local models, i.e., scenarios pertaining to
triples of variables, that the relation is involved with in a given QCN. This
makes our approach similar to a counting-based one for CSPs [21], as it too is
adaptive and it too seeks to make branching decisions that preserve most of
the solutions by determining what proportion of local solutions agree with that45

decision. Further inspiration was drawn from a recent work in [22], where it
was observed that a scenario of a QCN may often be constructed collectively
by relations that appear in many scenarions individually, i.e., a scenario of a
QCN may often be constructed by selecting the most popular relation for each
constraint. Through an evaluation with a random and a structured dataset of50

QCNs of IA, we show that we may achieve up to 5 times better performance
for structured instances, and gains of about 20% for random ones. Finally, we
also present a selection protocol algorithm that aims to effectively and efficiently
synthesize the involved heuristics (static or dynamic) into a better performing
meta-heuristic, and show that is possible to do better in the phase transition55

of each of our datasets with just a minimal amount of dynamic preprocessing.
Specifically, we show that we can further ameliorate the already improved results
by up to about 15% for structured instances and 5% for random ones.

The rest of the paper is organized as follows. In Section 2 we give some
preliminaries on QSTR. Next, in Section 3 we propose our dynamic branching60

approach, discuss some dynamic heuristics that are used internally, present the
related algorithms, and evaluate our framework with random and structured
QCNs of IA, commenting on the outcome. Then, in Section 4 we present a
selection protocol algorithm that aims to effectively and efficiently synthesize
the involved heuristics into a better performing meta-heuristic, and evaluate it65

accordingly. Finally, in Section 5 we discuss related work, and in Section 6 we
draw some conclusive remarks and give directions for future work.

2. Preliminaries

A binary qualitative spatial or temporal constraint language, is based on
a finite set B of jointly exhaustive and pairwise disjoint relations, called the70

set of base relations [23], that is defined over an infinite domain D. The base
relations of a particular qualitative constraint language can be used to represent
the definite knowledge between any two of its entities with respect to the level of
granularity provided by the domain D. The set B contains the identity relation
Id, and is closed under the converse operation (−1). Indefinite knowledge can75

be specified by a union of possible base relations, and is represented by the set
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precedes (before) p meets m overlaps o
x y x y x y

preceded by (after) pi met by mi overlapped by oi
y x y x y x

starts s during d finishes f
x y x y xy

started by si contains di finished by fi
y x y x yx

equals eq
x = y

Figure 2: A representation of the 13 base relations b of IA, each one relating two potential
intervals x and y as in x b y; here, bi denotes the converse of b (viz., b−1 formally)

containing them. Hence, 2B represents the total set of relations. The set 2B is
equipped with the usual set-theoretic operations of union and intersection, the
converse operation, and the weak composition operation denoted by the symbol
� [23]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}. The weak composition80

(�) of two base relations b, b′ ∈ B is defined as the smallest (i.e., strongest)
relation r ∈ 2B that includes b◦ b′, or, formally, b� b′={b′′ ∈ B | b′′∩(b◦ b′) 6= ∅},
where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is
the (true) composition of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =⋃
{b � b′ | b ∈ r, b′ ∈ r′}.85

As an illustration, consider the well-known qualitative temporal constraint
language of Interval Algebra (IA), introduced by Allen [18]. IA considers time
intervals (as temporal entities) and the set of base relations B = {eq, p, pi, m,
mi, o, oi, s, si, d, di, f , fi} to encode knowledge about the temporal relations
between intervals on the timeline, as depicted in Figure 2. Specifically, each base90

relation represents a particular ordering of the four endpoints of two intervals
on the timeline, and eq is the identity relation Id.

Notably, most of the well-known and well-studied qualitative constraint lan-
guages, such as Interval Algebra [18] and RCC8 [24], are in fact relation alge-
bras [17].95

The problem of representing and reasoning about qualitative spatial or tem-
poral information can be modeled as a qualitative constraint network, defined
as follows:

Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables, each representing100

an entity of an infinite domain D;

• and C is a mapping C : V ×V → 2B such that C(v, v) = {Id} for all v ∈ V
and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V , where

⋃
B = D× D.
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{d, s, si} {oi}
{oi,m}

{pi, eq}

(a) A satisfiable QCN N
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x2

x3

x4

(b) A solution σ of N

x1 x2

x3x4

{m}

{d}
{d} {oi}

{oi}

{eq}

(c) A scenario S of N

Figure 3: Figurative examples of QCN terminology using IA

An example of a QCN of IA is shown in Figure 3a; for clarity, converse
relations as well as Id loops are not mentioned or shown in the figure.105

Definition 2. Let N = (V,C) be a QCN, then:

• a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V ,
∃b ∈ C(u, v) such that (σ(u), σ(v)) ∈ b (see Figure 3b, as an example);

• N is satisfiable iff it admits a solution;

• a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that110

C ′(u, v) ⊆ C(u, v) ∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂
C(u, v), then N ′ ⊂ N ;

• N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation
{b} with b ∈ B;

• a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 3c);115

• the constraint graph ofN is the graph (V,E) where {u, v} ∈ E iff C(u, v) 6=
B and u 6= v;

• N is trivially inconsistent, denoted by ∅ ∈ N , iff ∃v, v′ ∈ V such that
C(v, v′) = ∅;

• N is the empty QCN on V , denoted by ⊥V , iff C(u, v) = ∅ for all u, v ∈ V .120

Given a QCN N = (V,C) and v, v′ ∈ V , we introduce the following operation
that substitutes C(v, v′) with a relation r ∈ 2B to produce a new, modified, QCN:

• N[v,v′]/r with r ∈ 2B yields the QCN N ′ = (V,C ′), where C ′(v, v′) = r,
C ′(v′, v) = r−1, and C ′(u, u′) = C(u, u′) ∀(u, u′) ∈ V ×V \{(v, v′), (v′, v)}.

We recall the definition of �G-consistency [25] (cf [26]), which entails consis-125

tency for all triples of variables in a QCN that form triangles in an accompa-
nying graph G, and is a basic and widely-used local consistency for reasoning
with QCNs.
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Definition 3. Given a QCN N = (V,C) and a graph G = (V,E), N is said
to be �G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆130

C(vi, vk) � C(vk, vj).

We note here that if G is complete, �G-consistency becomes identical to
�-consistency [26], and, hence, �-consistency is a special case of �G-consistency.
In the sequel, given a QCN N = (V,C) of some calculus and a graph G = (V,E),
we assume that �G(N ) is computable. This assumption holds for most widely-135

adopted qualitative calculi [17].

3. A Dynamic Branching Approach

In qualitative constraint-based reasoning, the state-of-the-art approach to
check the satisfiability of a given QCN N , consists in splitting every relation r
that forms a constraint between two variables in N into a subrelation r′ ⊆ r140

that belongs to a set of relations A over which the QCN becomes tractable [27].
In particular, for most widely-adopted qualitative calculi [17], such split sets are
either known or readily available [28], and tractability is then achieved via the
use of some local consistency in backtracking fashion; after every refinement of a
relation r into a subrelation r′, the local consistency is enforced to know whether145

the refinement is valid or backtracking should occur and another subrelation
should be chosen at an earlier point [27, Section 2]. One of the most essential
and widely-used such local consistencies is �G-consistency, where G is either the
complete graph on the variables of N [26] (the case of standard �-consistency),
or a triangulation (chordal completion) of the constraint graph of N [25].1150

As an illustration, the subset HIA of the set of relations of Interval Alge-
bra [30] is tractable for �G-consistency, i.e., �G-consistency is complete for decid-
ing the satisfiability of any QCN defined over HIA with respect to a triangulation
G of its constraint graph [25]. That subset contains exactly those relations that
are transformed to propositional Horn formulas when using the propositional155

encoding of Interval Algebra [30]. To further facilitate the reader, let us con-
sider the constraint C(x3, x4) in the QCN of Interval Algebra in Figure 4. The
relation {mi, di, si, p,m, d, s} that is associated with that constraint does not
appear in the subset HIA and hence tractability is not guaranteed in general,
but it can be split into subrelations {mi}, {di, si}, {p,m}, {d, s} with respect to160

HIA; each of those subrelations belongs to HIA.

Dynamic Selection of Subrelations via Counting Local Models

It is standard practice in the qualitative constraint-based reasoning com-
munity, and the constraint programming community in general, that, given a
constraint of some QCN, a subrelation that is most likely to lead to a solution165

1Please refer to [29] for the properties that are needed to exploit triangulations of QCNs
in terms of tractability preservation.
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x4 x3

x5 x2

x1

{p, d, fi}

{pi, d,m}{eq, o, f}

{d, s}

{d,m,mi}

{p, si, f}

{p, d, di,m,mi, s, si}

{di, s, f}{di}

B

b #l-models
p 6
d 6
di 7
m 4
mi 5
s 3
si 3

Figure 4: Given the above QCN N = (V,C) of IA, a partition of C(x3, x4) with respect to the
subset HIA [30] is {{mi}, {di, si}, {p,m}, {d, s}}; for this QCN, heuristic dynamic avg would
prioritize relation {p,m}, {di, si}, or {mi} (subject to tie-breaks), heuristic dynamic sum re-
lation {p,m} or {di, si} (again subject to tie-breaks), and heuristics static [19], dynamic max,
and dynamic min relations {d, s}, {di, si}, and {mi} respectively

should be prioritized [19, 31]; in the context of finite-domain CSPs, this strategy
is known as the least-constraining value heuristic [32].

Currently, the state of the art in qualitative constraint-based reasoning im-
plements that selection strategy in a completely static manner. In particular,
base relations of a calculus are assigned static weights a priori, and the over-170

all weight that is associated with a subrelation corresponds to the sum of the
weights of its base relations [19, 31]. In detail, a weight for a base relation is
obtained by successively composing it with every possible relation and calculat-
ing the total number of resulting base relations from the compositions, which is
then suitably scaled. Thus, the bigger the weight for a base relation is, the less175

restrictive that base relation is. For example, the weights of base relations d
and s in Interval Algebra are 4 and 2 respectively and, consequently, the weight
of relation {d, s} is 4 + 2 = 6 [19, Figure 9].

Two major problems with the aforementioned static strategy is that it as-
sumes a uniform use of relations in QCNs (in the sense that weights are computed180

by equally considering all the relations of a calculus), and it does not exploit
any structure that may be present in QCNs (a relation that is used to form more
than one constraints in a given QCN, which is typically the case, may exhibit
different levels of restrictiveness among those constraints).

In this paper, we propose the selection of subrelations to be dynamic and, in185

particular, based on the count of local models that the individual base relations
of a subrelation are part of. Let N↓V ′ , with V ′ ⊆ V , denote the QCN N =
(V,C) restricted to V ′, we formally define the notion of local models as follows:
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Definition 4 (local models). Given a QCN N = (V,C), a graph G = (V,E),
and a constraint C(v, v′) with {v, v′} ∈ E, the local models of a base relation190

b ∈ C(v, v′) are the scenarios S = (V ′, C ′) of N↓V ′ , with V ′ = {v, v′, u}, such
that {v, u}, {u, v′} ∈ E and C ′(v, v′) = {b}.

Simply put, given a QCN (V,C), a graph G = (V,E), and a constraint
C(v, v′) with {v, v′} ∈ E, we count how many times a given base relation b ∈
C(v, v′) participates in the scenarios of each triangle in G that involves vari-195

ables v and v′, i.e., the local models from our perspective. For example, the
base relation s in the constraint C(x3, x4) in the QCN of Interval Algebra in
Figure 4 participates in 3 local models, one for each of the 3 triangles involving
variables {x3, x4, x5}, {x3, x4, x1}, and {x3, x4, x2} respectively. In that sense,
our approach can be seen as being similar to a counting-based one for CSPs [21],200

which, as our own method, formalizes a framework that is adaptive and seeks
to make branching decisions that preserve most of the solutions by determin-
ing what proportion of local solutions agree with that decision. We devise the
following strategies for chosing a subrelation from a given set of subrelations:

• dynamic f: for each subrelation r′ find the f count of local models among205

each base relation b ∈ r′, where f ∈ {max,min, avg, sum}, then choose the
subrelation for which the highest such count was obtained.

In the context of counting local models, dynamic max, dynamic min, dy-
namic avg, and dynamic sum prioritize the subrelation with the best most,
least, on average, and in aggregate supportive base relation respectively. At210

this point, let us revisit the QCN of Interval Algebra in Figure 4, where the
relation {mi, di, si, p,m, d, s} that is associated with the constraint C(x3, x4) is
split into subrelations {mi}, {di, si}, {p,m}, {d, s} with respect to subset HIA.
By viewing the table that lists the count of local models for each base relation
in C(x3, x4) on the right-hand side of the figure, the reader can verify that each215

strategy correctly prioritizes its subrelation of choice according to its objective;
as a reminder, the weights associated with the static strategy detailed earlier
are provided in [19, Figure 9].

Tackling QCNs via Incorporating Dynamic Branching

For reference, a variation of the state-of-the-art backtracking algorithm for220

solving a QCN is provided in Algorithm 1, the main diffence to the one appearing
in the literature [27, Section 2] being the use of dynamic selection of subrelations,
in line 8, instead of selection based on static weights. Another difference is the
use of a graph as a parameter, but, over the past few years, this has become a
standard way of generalizing the original algorithm to exploit certain properties225

of a calculus that relate to graphs, see [33] and references therein.
The dynamic strategies that we described earlier are formally presented in

Algorithms 2 and 3. In particular, in lines 2–4 of Algorithm 2 we calculate the
count of local models for each base relation of each subrelation that pertains to a
given constraint. This calculation is performed via a call to Algorithm 3. After230
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Algorithm 1: Refinement(N , G, A, f)

in : A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, and a
function f ∈ {max,min, avg, sum}.

out : A refinement of N with respect to G over A, or ⊥V .
1 begin
2 N ← �

G(N );
3 if ∅ ∈ N then
4 return ⊥V ;

5 if ∀{v, v′} ∈ E, C(v, v′) ∈ A then
6 return N ;

7 (v, v′) ← {v, v′} ∈ E such that C(v, v′) 6∈ A;
8 foreach r ∈ dynamicSelection(N , G, A, (v, v′), f) do
9 result ← Refinement(N[v,v′]/r, G, A, f);

10 if result 6= ⊥V then
11 return result ;

12 return ⊥V ;

Algorithm 2: dynamicSelection(N , G, A, (v, v′), f)

in : A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, a pair of
variables (v, v′), and a function f ∈ {max,min, avg, sum}.

out : A relation r ∈ A.
1 begin
2 counter ← hashTable();
3 foreach r ∈ {r1, . . . , rn ∈ A | {r1, . . . , rn} is a partition of C(v, v′)} do
4 counter[r] ← f{localModels(b,N , G, (v, v′)) | b ∈ r};
5 while counter is not empty do
6 r ← counter key paired with the maximum value;
7 remove r from counter;
8 yield r;

obtaining the count of models for each such base relation, we implement the
chosen strategy by applying the respective function among {max,min, avg, sum}
on the results. Now, each subrelation is associated with a number, a dynamic
weight, and this information is stored in a hash map (line 4). Then, in lines 5–8
the subrelation with the highest dynamic weight is prioritized each time there235

is a need for a new subrelation to be tried out in an assignment.

Complexity Analysis. Given the fact that for a calculus the number of its
base relations, i.e., |B|, can be viewed as a constant, Algorithm 2 calculates the
count of local models for a base relation in a given constraint in linear time in the
maximum degree of the graph G that is used as a parameter; each subsequent240

prioritization of a subrelation based on those calculated counts (lines 5–8) takes
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Algorithm 3: localModels(b,N , G, (v, v′))

in : A base relation b, a QCN N = (V,C), a graph G = (V,E), and a
pair of variables (v, v′).

out : An integer.
1 begin
2 count ← 0;
3 foreach u ∈ NG(v) ∩ NG(v′) do
4 foreach (b′, b′′) ∈ C(v, u)× C(u, v′) do
5 if b ∈ b′ � b′′ then
6 count ← count + 1;

7 return count;

constant time. In particular, given a QCN N = (V,C) and a graph G = (V,E),
Algorithm 2 runs in Θ(∆(G)) time (where ∆ denotes maximum degree). In
practice, there was no noticable slowdown for the dataset that we consider in
this paper (see following subsection), which is not surprising, as the search space245

for solving a QCN is O(|B||E|) in general.

Evaluation of Heuristics

In this section we evaluate the proposed dynamic branching heuristics, as
well as the state-of-the-art static branching strategy that appears in the litera-
ture, with respect to the fundamental reasoning problem of satisfiability check-250

ing of QCNs. Specifically, we explore the efficiency of the involved heuristics
in determining the satisfiability of a given network instance when used in the
standard backtracking algorithm (see Algorithm 1), and investigate their fit-
ness score too, which is the difference “% of times a heuristic f is the best
choice” − “% of times a heuristic f is the worst choice”; clearly, fitness score255

∈ [−100%, 100%]. Finally, we also present results for two virtual portfolios of
reasoners that always make the best and worst choice of a heuristic respectively
for a given network instance. Specifically, these portfolios are virtual in the
sense that they do not actually exist beforehand, but are established only after
the evaluation is fully completed by looking at which heuristic performed best260

or worst for each instance and considering that heuristic as the choice of the vir-
tual portfolio best or worst respectively. Therefore, the virtual portofolios best
and worst allow us to set upper and lower bounds respectively of the expected
performance of the various heuristics.

Technical specifications. The evaluation was carried out on a computer with265

an Intel Core i7-8565U processor, 16 GB of RAM, and the Ubuntu 18.04.4
LTS x86 64 OS. All algorithms were coded in Python and run using the PyPy
intepreter under version 5.10.0, which implements Python 2.7.13. Only one
CPU core was used per run.
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Figure 5: Fitness score of each strategy for the instances of Table 1; “% of times a heuristic
f is the best choice” − “% of times a heuristic f is the worst choice”

Dataset. We generated 7 000 random instances of Interval Algebra using model270

H(n = 40, d) [34], 1 000 of n = 40 variables for each constraint graph degree value
d ∈ {9, 10, 11, 12, 13, 14, 15} specifically, and 4 000 structured instances of Inter-
val Algebra using model BA(n = 80,m, 3CNF) [35], 1 000 of n = 80 variables for
each constraint graph preferential attachment [36] value m ∈ {4, 5, 6, 7} specifi-
cally. In particular, model H(n, d) [34] considers constraint networks of a regular275

graph structure, and was chosen for its suitability and consistency with respect
to other traditional works in the literature, and model BA(n,m, 3CNF) [35] is
a more recent model that considers constraint networks exhibiting a scale-free
structure, and was chosen exactly for its ability to induce structure in network
instances and consequently allow us to have a more varied dataset. In both of280

the aforementioned generation models, constraints were picked from the set of
relations expressible in 3CNF when transformed into first-order formulae [34],
in order to obtain instances that maximally challenge search. Finally, regarding
the graphs that were given as input to our algorithms, the maximum cardinality
search algorithm [37] was used to obtain triangulations of the constraint graphs285

of our QCNs. The choice of such chordal graphs was not only reasonable but also
crucial given their important theoretical and practical implications in qualitative
constraint-based spatial and temporal reasoning, as reviewed in [33]; in short,
the use of those graphs itself was inspired by [38, 29, 39] among other works,
where preliminary results pertainining to tree decompositions were established.290

Results. Regarding the generation model H(n = 40, d), the main results are
presented in Table 1. The dynamic strategies of dynamic min and dynamic avg
are up to 20% faster on average than the static one in the phase transition of
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Figure 6: Fitness factor of each strategy for the instances of Table 2; “% of times a heuristic
f is the best choice” − “% of times a heuristic f is the worst choice”

the tested instances.2 Specifically, the phase transition covers mostly the case
where d = 12, and a little less the case where d = 13. With respect to the295

rest of the dynamic heuristics, viz., dynamic max and dynamic sum, the results
suggest that dynamic max outperforms static by a small margin on average in
the phase transition, whilst dynamic sum almost mimics the performance of
static, if not arguably being a little worse than static overall. This last finding
informs us that relying too much on the number of base relations of a relation300

(viz., the cardinality of a relation) is a bad choice in general, i.e., it is better
to focus on few base relations individually, where each one appears in many
local models (quality), than on many base relations aggregately, where each one
appears in few local models (quantity). The aforementioned results are depicted
from a different perspective and complemented in Figure 5, where the fitness305

score for each heuristic is detailed. The superiority of heuristics dynamic min
and dynamic avg among all strategies becomes even more so clear, and the
marginal performance gains of dynamic max, and dynamic sum at times with
respect to static in the phase transition are well-captured by their fitness scores
too. Finally, at this point, it is interesting to observe the performance of the310

virtual portfolios of reasoners best and worst ; as a reminder these always make
the best and worst choice of a heuristic respectively for a given network instance.
The performance of portfolio best in particular allows us to be optimistic about
future research in dynamic strategies, since it shows that there is still a lot
of room for improvement. Specifically, research could be carried out both in315

2Even though the improvement for this particular dataset may not seem that drastic, bear
in mind that the instances of this dataset have little to no structure as their constraint graphs
are regular graphs.
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terms of defining new dynamic strategies and in terms of devising selection
protocols that choose among already existing strategies. In fact, a first effort to
obtain a selection protocol that chooses among the better performing strategies
is presented in the next section.

Regarding the generation model BA(n = 80,m, 3CNF), the results are pre-320

sented in Table 2 and Figure 6. Here, dynamic min and dynamic avg are up to
3 and 5 times faster on average respectively than the static one in the phase
transition of the tested instances, which appears for m = 6. The rest of the
results are qualitatively similar to the previous dataset.

4. A Selection Protocol for Heuristics325

It was shown in the previous section that heuristics dynamic min and dy-
namic avg are the better performing ones for the dataset that was used here. In
particular, dynamic min was found to perform better than any other heuristic
for the majority of the instances, whereas dynamic avg appeared to be more ad-
vantageous when it came to some very difficult instances of the phase transition,330

albeit only marginally so. In this section, given such a dataset of instances, we
deal with the following two questions:

• Can we parsimoniously obtain a valid ranking of the involved heuristics,
i.e., one that does not involve going through the entire dataset and solving
all QCNs (as we did in Section 3)?335

• Can we have a selection protocol that will both effectively and efficiently
synthesize the involved heuristics into a better performing meta-heuristic?

Regarding the first question, we will show that this can be done with a
minimal amount (i.e., negligible in terms of computational time) of dynamic
preprocessing of a given set of QCNs, and regarding the second question, we will340

demonstrate that the aforementioned preprocessing phase can be further utilized
to obtain a meta-heuristic that outperforms all other heuristics discussed so far
in the phase transition region. However, we must note that the performance of
our meta-heuristic to be presented in this section leaves a lot to be desired when
compared with the virtual portofolio best, but we think that it is nevertheless345

encouraging and that it sets the basis on how future research could proceed (we
make a remark on that in Section 5).

A Selection Protocol Algorithm

In Algorithm 4 we present our selection protocol algorithm, called Oracle,
which given a QCN decides which (static or dynamic) heuristic should be used to350

tackle the QCN; as a reminder, these heuristics are dynamic min, dynamic avg,
dynamic sum, dynamic max, and static. In a sense, Algorithm 4 tries to mimic
the behaviour of Algorithm 1 by sequentially trying to assign subrelations to
constraints with the purpose of reaching a locally consistent refinement of the
QCN over a given subset A of relations (with respect to a given graph G).355
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Algorithm 4: Oracle(N , G, A, k = 7)

in : A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, and a
positive integer k (defaulted to 7).

out : A function f ∈ {max,min, avg, sum}, or null.
1 begin
2 if ∀{v, v′} ∈ E, C(v, v′) ∈ A then
3 return null;

4 metrics ← hashTable();
5 foreach g ∈ {max,min, avg, sum, null} do
6 metrics[g] ← 0;

7 foreach g ∈ {max,min, avg, sum, null} do
8 foreach ∈ {0, 1, . . . , k − 1} do
9 M = (V ′, C′) ← N ;

10 counter ← 0;
11 do
12 (v, v′) ← random {v, v′} ∈ E such that C(v, v′) 6∈ A;
13 counter ← counter + 1;
14 if g 6= null then
15 r ← dynamicSelection(M, G, A, (v, v′), g);

16 else
17 r ← staticSelection({r1, . . . , rn ∈ A | {r1, . . . , rn} is a

partition of C(v, v′)}) see, e.g., [19, Figure 9]

18 M′ ← �
G(M[v,v′]/r);

19 if ∅ ∈ M′ then
20 break;

21 M ←M′;
22 while ∃{v, v′} ∈ E | C(v, v′) 6∈ A;
23 assignedConstraints ← {C′(v, v′) | {v, v′} ∈ E ∧ C′(v, v′) ∈ A};
24 metrics[g] ← metrics[g] + |assignedConstraints|

counter
;

25 return metrics key paired with the maximum value;

However, the main difference with Algorithm 1 is that no backtracking occurs
and the aforementioned sequential treatment stops once failure in encountered
(i.e., an assignment of the empty relation takes place). After each assignment
of a subrelation to a constraint, or, in other words, a refinement of a relation
r (associated with a constraint) into a subrelation r′, �G-consistency is enforced360

to know whether the refinement is valid or it leads to failure. This process is
performed k random times for each heuristic, i.e., each time a random ordering
of constraints is processed, and metrics are kept while doing so in order to
find the better performing heuristic in the end. In what follows we describe the
algorithm in more detail. In lines 2–3 of the algorithm null is returned in case all365

of the relations that are associated with the constraints of the given QCN already
belong to the provided subset A; in this case, none of the heuristics will be used,
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as no refinement will ever take place (see again lines 5–6 in Algorithm 1). As a
convention, in our algorithm null suggests that one can stick to the original static
strategy. In lines 4–6 a hash map is created to keep track of a performance metric370

for each heuristic. As it is seen later on in lines 23–24, the metric of choice is the
number of constraints that are assigned a subrelation from A per step, which
is a direct estimate of how fast the QCN is being refined over A, or, in more
technical terms, of how few nodes are visited as the QCN is being refined over
A. To avoid confusion, in each step a single constraint is assigned a subrelation375

from A (line 18), but the subsequent application of �G-consistency may (and will
almost always) lead to other constraints being refined and potentially assigned
with subrelations from A; in that sense, the choice of the proper subrelation
for that initial and subsequent single assignments, which pertains to the choice
of the heuristic that will be used to begin with, is important. Finally, the380

whole sequential treatment that we described in the beginning is implemented
within lines 11–22 for each of the heuristics involved and for k random times
for each heuristic, and the best performing heuristic is returned in line 25.
Specifically, within lines 11–22 the constraints of the given QCN are sequentially
assigned a subrelation from subset A until failure occurs due to the respective385

sequential application of �G-consistency. It is worth noting that if k = 1 and
the same ordering of constraints is used as in Algorithm 1 without any failure
occuring for any of the heuristics, the proposed heuristic returned in line 25 is
no longer an estimate but an exact decision of a heuristic that will perform best
for Algorithm 1 (this would also essentially mean that Algorithm 1 would refine390

a QCN over A in a backtrack-free manner).

Complexity Analysis. Due to the incremental functionality of the state-of-
the-art algorithm for enforcing �G-consistency [25] (see also Theorem 1 in [40],
Section 3] and the surrounding text), Algorithm Oracle runs in O(k · α) time,
where α = O(∆(G)|E||B|) is the runtime of the state-of-the-art algorithm for395

enforcing �G-consistency [25]. Since k should be treated as a constant (it defaults
to 7, and in our experimentation we did not observe any meaningful gain in
increasing the number of random orderings of constraints to be processed for
each heuristic), the total runtime is O(∆(G)|E||B|). In practice, the overall
computational impact was found to be negligible, which is not all surprising400

since the application of �G-consistency on QCN instances requires a minimal
amount of time when compared to the main backtracking module that searches
for a solution among an exponential number of candidates (see Algorithm 1).

Evaluation of Selection Protocol Algorithm

After having introduced our selection protocol algorithm, viz., Algorithm405

Oracle, and having analyzed its computational properties, it is important to eval-
uate whether it achieves the objectives specified earlier in this section, namely,
whether (i) it can be used to parsimoniously obtain a valid ranking of the in-
volved heuristics, i.e., one that does not involve going through the entire dataset
and solving all QCNs, and whether (ii) it implements a selection protocol that410
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Table 3: Heuristic selection by Algorithm Oracle in the phase transition of the different
datasets used here, where %s denote that a heuristic is selected some percentage (%) amount
of times; in parenthesis, the on average heuristic selection for an entire dataset, not just its
phase transition

heuristic H(n = 40, d ∈ {12, 13}) [34] BA(n = 80,m = 6, 3CNF) [35]

static 0.4% (0.6%) 2.9% (2.6%)

dynamic max 2.0% (3.2%) 9.5% (7.6%)

dynamic min 57.9% (56.7%) 52.3% (57.3%)

dynamic avg 39.6% (39.0%) 32.7% (30.2%)

dynamic sum 0.1% (0.5%) 2.6% (2.3%)

will both effectively and efficiently synthesize the involved heuristics into a bet-
ter performing meta-heuristic. We tackle these open questions in what follows;
we used the same technical specifications for the evaluation as in Section 3.

Ranking of Heuristics. In Table 3 we present results regarding the heuristic
selection of the algorithm for each of the datasets used in this paper. For con-415

ciseness, we focus on the phase transition of these datasets, but we also present
the on average heuristic selection in parentheses; in general, there was only little
variation accross instances of different density for each dataset, which is in ac-
cordance with the design of the algorithm (it should not affect the ranking of the
heuristics whether an instance of a specific type/model is sparse or dense). The420

results are in line with the performance of the different heuristics as they were
evaluated in the previous section. In particular, in the evaluation of Section 3,
the dynamic strategies dynamic min and dynamic avg were found to clearly out-
perform all the rest of the heuristics, forming a league of their own. Regarding
these two heuristics specifically, dynamic min was shown to have a slight edge425

over dynamic avg overall, with the exception of some very hard instances in
the phase transition where dynamic avg perfomed better. With respect to the
rest of the heuristics, dynamic max outperformed static by a small margin, and
dynamic sum almost matched the performance of static, yet it could be argued
that it performed a little worse than static overall. At this point, we can argue430

that we can parsimoniously obtain a valid ranking of the involved heuristics,
with just a minimal amount of dynamic preprocessing. Indeed, so far we have
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Table 4: Evaluation with random IA networks generated using model H(n = 40, d) [34], where
a green font denotes best performance among all heuristics (when compared with Table 1);
median|average|maximum # of visited nodes

median|average|maximum CPU time

d best random oracle worst

9 62.0|61.8|95.0
0.0s|0.0s|10.8s

85.0|86.8|210.0
0.0s|0.0s|10.9s

70.0|70.7|146.0
0.0s|0.0s|10.9s

114.0|120.4|520.0
0.0s|0.0s|11.0s

10 52.0|52.6|168.0
0.0s|0.0s|10.9s

77.0|108.1|3.9k
0.0s|0.1s|10.9s

64.0|95.5|3.2k
0.0s|0.1s|11.1s

108.0|227.7|8.9k
0.0s|0.1s|11.0s

11 59.0|679.3|388.0k
0.0s|0.5s|4.4m

256.5|2.2k|490.1k
0.1s|1.5s|5.4m

137.0|1.7k|546.8k
0.1s|1.2s|6.3m

682.0|5.0k|619.7k
0.4s|3.4s|6.9m

12 931.5|10.3k|953.5k
0.7s|7.4s|10.7m

4.7k|21.7k|996.7k
3.6s|15.4s|11.4m

3.0k|17.7k|996.1k
2.3s|13.0s|11.6m

10.0k|34.9k|1.0m
7.4s|24.5s|12.0m

13 2.0k|7.6k|214.9k
1.6s|5.9s|2.7m

3.4k|11.3k|267.0k
2.7s|8.8s|3.3m

2.7k|10.8k|245.6k
2.1s|8.1s|3.0m

4.6k|15.7k|302.8k
3.7s|12.3s|4.1m

14 460.0|1.3k|58.1k
0.4s|1.1s|43.9s

679.5|1.8k|62.9k
0.6s|1.5s|52.3s

615.0|1.7k|64.9k
0.6s|1.6s|1.0m

933.0|2.5k|106.0k
0.8s|2.1s|1.3m

15 113.0|220.7|2.6k
0.1s|0.2s|11.2s

172.1|338.0|5.5k
0.1s|0.3s|11.3s

160.0|303.4|4.8k
0.2s|0.3s|11.3s

251.5|463.7|5.9k
0.2s|0.4s|11.4s

shown that our algorithm is able to parsimoniously establish a ranking of the
heuristics that matches their performance in practice (with respect to the evalu-
ation that took place in Section 3, as also mentioned earlier), and that it can do435

so with minimal effort (review again the complexity analysis part). The exact
computational impact was found to be negligible and is included in the results
that are presented in what follows, viz., Tables 4 and 5. In fact, as the findings
in Table 3 reveal, we could make an informed decision about which heuristic
would respectively perform best by preprocessing around 10 instances of a given440

dataset of a specific type/model (either H(n, d) [34] or BA(n,m, 3CNF) [35] in
this paper); this corresponds to 1% of the total instances used here.

Performance of Meta-heuristic. A first efficient yet basic meta-heuristic
can be synthesized by randomly choosing among the available heuristics with
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Figure 7: Fitness score of each strategy for the instances of Tables 1 and 4; “% of times a
heuristic f is the best choice” − “% of times a heuristic f is the worst choice”

equal probability; we call this meta-heuristic random. Although the random445

aspect of this meta-heuristic might suggest poor performance, we note that we
randomly choose among heuristics that were shown to perform equal or better
overall than the state of the art. A more informed and efficient meta-heuristic
can be synthesized by simply trusting the output of Algorithm 4, viz., Oracle,
for every given QCN that it receives as input, and then using that output, viz.,450

the suggested heuristic, to perform backtracking search utilizing it (see Algo-
rithm 1); we call this meta-heuristic oracle (to match the name of Algorithm 4).
We show here that this simple strategy is also quite effective, in the sense that
it allows one to synthesize the available heuristics (static or dynamic) into an
overall better performing meta-heuristic in the phase transition. Specifically,455

regarding the generation model H(n = 40, d), the main results are presented in
Table 4 and complemented in Figure 7; for the meta-heuristic random we present
the on average performance with respect to 7 random runs. The meta-heuristic
oracle not only outperforms the meta-heuristic random, which was expected,
but also all the invidual heuristics in the phase transition (please compare with460

Table 1), which covers mostly the case where d = 12, and a little less the case
where d = 13. In particular, we can further ameliorate the already improved
results by up to about 5% (with respect to the number of visited nodes) for the
random instances here. Perhaps surprisingly, our proposed meta-heuristic oracle
perfoms better in the phase transition, where it is hard to do so as any wrong465

choice could cost more, than outside of it, where the selection of the better per-
forming heuristic should be more straightforward as not a lot of backtracking
occurs. We can explain this as follows. By reviewing the logs, we observed
that the more difficult the instance to be solved is, the bigger the difference
between the metrics of the various heuristics (line 24 in Algorithm Oracle) will470
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Table 5: Evaluation with structured IA networks generated using model BA(n =

80,m, 3CNF) [35];
median|average|maximum # of visited nodes

median|average|maximum CPU time

m best random oracle worst

4 144.0|144.1|177.0
0.0s|0.0s|10.7s

180.6|181.1|254.9
0.0s|0.0s|10.8s

151.0|153.3|320.0
0.0s|0.1s|11.0s

219.0|222.3|332.0
0.0s|0.0s|10.8s

5 113.0|114.5|550.0
0.0s|0.0s|10.8s

145.1|161.0|967.9
0.0s|0.1s|10.9s

131.0|145.3|1.5k
0.1s|0.1s|11.2s

178.0|226.3|2.9k
0.1s|0.1s|11.0s

6 121.0|452.3|72.5k
0.1s|0.6s|1.7m

230.0|4.3k|1.2m
0.3s|4.8s|21.0m

175.0|778.4|139.6k
0.3s|1.1s|3.2m

337.5|10.6k|3.8m
0.4s|11.8s|1.1h

7 34.0|82.4|3.4k
0.0s|0.1s|11.1s

53.3|151.8|6.3k
0.1s|0.2s|11.3s

48.0|126.0|5.0k
0.1s|0.2s|11.3s

74.5|252.2|22.6k
0.1s|0.4s|35.2s

be; thus, the better performing heuristic is more likely to stand out among the
inferior ones. Regarding the generation model BA(n = 80,m, 3CNF), the results
are presented in Table 5 and Figure 8. In this case, we can further ameliorate
the already improved results by up to about 15% (with respect to the number
of visited nodes) for the structured instances here (please also compare with475

Table 2). Again, the improvement involves instances in the phase transition,
which appears for m = 6. The rest of the results are qualitatively similar to
the previous dataset. Finally, since the runtime distribution is heavy-tailed for
both datasets, the interested reader may want to look into the 0.5th percentile
of most difficult instances pertaining to Table 4 (and Table 1 by extention) and480

Table 5 (and Table 2 by extention) for each strategy discussed so far in this
work, depicted in Figures A.9 and A.10 respectively in Appendix A.

5. Related Work

With regard to dynamic branching heuristics in the context of QCNs, to the
best of our knowledge the work presented here is the first to move away from485

the static weighting scheme dictated by the literature; see again Figure 1 and
the approach in [19] with regard to that aspect. However, in [19] the authors
also propose a different approach that is based on knowledge of the structure
of scenarios for some given set of QCNs. In particular, they propose to extract
scenarios from a small number of QCN instances of a given dataset of some490

type/model, without the use of any heuristic whatsoever, and then examine
these scenarios and determine which base relations are most likely to appear in
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Figure 8: Fitness factor of each strategy for the instances of Tables 2 and 5; “% of times a
heuristic f is the best choice” − “% of times a heuristic f is the worst choice”

a scenario and which base relations are least likely to do so. Once this infor-
mation is obtained, it is used to revise the static weighting scheme accordingly;
for example, even though in [19, Figure 9] base relation equals appears more495

restrictive than overlaps according to the static weights presented there, equals
could be considered the least restrictive base relation in QCNs where the major-
ity of entities are equal to one another (because this base relation would appear
most in scenarios). Our approach is largely different in that we do not a priori
extract scenarios from QCNs, nor to be a priori fix weights for base relations500

based on the extracted scenarios, but we dynamically, i.e., at runtime, establish
weights for the different involved base relations based on local information. A
major drawback with the former approach is that randomly trying to extract
scenarios from even the smallest of QCNs instances (i.e., without the use of any
heuristics at any step of the search process, as suggested in [19]) could still be505

a non-practical extra effort. In our own experience, a QCN of Interval Algebra
of few tens of variables would already pose a significant challenge for that type
of random search; we remind the reader that given a QCN N = (V,C) and
a graph G = (V,E), the search space for solving it (extracting a scenario) is
O(|B||E|) in general. Instead, our approach is similar to a counting-based one510

for CSPs [21], as, much like the work in [21], it is adaptive and it seeks to make
informed branching decisions that preserve most of the solutions by determining
what proportion of local solutions agree with that decision.

With respect to heuristic selection in the context of QCNs, we are not aware
of any published work that contributes towards this direction. However, there515

is quite some related work in other domains such as planning, traditional con-
straint programming, Boolean satisfiability (SAT), and Answer Set Program-
ming (ASP) that can be used for inspiration for future work; we detail as follows.

22



In [41], the authors empirically examine several ways of exploiting and com-
bining the information of multiple heuristics in a satisficing3 best-first search520

algorithm in the context of planning, and compare their performance in terms
of coverage, plan quality, speed, and search guidance. The observant reader will
note that our approach here roughly compares with the sum approach in [41],
in that we select the heuristic with the better sum of assigned constraints per
step, averaged over k tries; see again Algorithm 4 and lines 24–25 there in par-525

ticular. However, in the work of [41] more sophisticated methods are exploited,
such as the alternation method [42], which avoids aggregating the estimates of
each individual heuristic and instead tries to make equal use of all heuristics,
essentially alternating between different heuristics. This method was shown to
perform better than the sum method, and we think that it is worth exploring530

it for heuristic selection in QCNs. Regarding related work pertaining to tra-
ditional constraint programming, SAT, and ASP, we would like to leverage a
hierarchical-like approach for heuristic selection (cf. [43]). Such approaches typ-
ically make a series of decisions based on various statistical features. Currently,
in our case, the count that associates a given constraint with the number of local535

configurations/models that the constraint participates in could be considered as
a statistical feature. However, more features of this type could be exploited for
a given constraint, such as the cardinality of its assigned relation, the frequency
of repetition of that relation in adjacent constraints, the density of the neigh-
bourhood of the constraint (see [44] for the exact definition of neighbourhood540

for a QCN), its splitting factor, i.e., whether its assigned relation belongs to
a tractable set of relations or it should be split into two or more subrelations,
its proximity to a Horn formula, and its potential search space coverage (e.g.,
relation {>} provides more coverage than {=} in qualitative point-based rea-
soning, as the latter restricts two points to being equal and, hence, focuses on a545

single point), among others. Certain dynamic features may also be explored and
recorded, by running some propagators for a limited amount of time on a given
instance. Such features naturally relate to standard CSP and SAT features as
described in [43] and standard ASP features as presented in [45], and exploiting
them for QCNs can be an important direction for future work.550

6. Conclusion and Future Work

We introduced and evaluated dynamic branching strategies for solving QCNs
via backtracking search, based on the count of local models (or local scenarios)
that a possible relation for a given constraint is involved with in a considered
QCN. Thus, we addressed a limitation in the state of the art in qualitative555

constraint-based reasoning, where the selection of a possible relation for a given
contraint is dictated a priori by precomputed static weights, without any re-
gard to the particulars of a given network instance of that calculus, such as its
structure. Our approach is adaptive and seeks to make branching decisions that

3This term is a a portmanteau of satisfy and suffice.
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preserve most of the solutions by determining what proportion of local solutions560

agree with that decision. An evaluation with a random and a structured dataset
of QCNs of Interval Algebra showed that up to 5 times better performance may
be achieved for structured instances, whilst non-negligible gains of around 20%
are maintained for random ones. We conjecture that the more structure is
present in a QCN, the better our dynamic approach will perform compared to565

the static one. Finally, we showed that these results can be further and no-
tably improved via a selection protocol algorithm that aims to effectively and
efficiently synthesize the involved heuristics (static or dynamic) into an overall
better performing meta-heuristic in the phase transition.

As this is a new approach, there are many directions for future work. In570

particular, we aim to improve on the selection protocol that we presented here
and is used to choose among different strategies, as the performance of the
virtual portfolio best in our evaluation, which always makes the best choice of
a heuristic for a given network instance, revealed that there is still a lot of
room for improvement. Regarding this research direction, the works that we575

referenced in Section 5 will be a source of inspiration for us. Further, more
sophisticated dynamic heuristics could be developed by going beyond triples of
variables, which currently form the local models, and engaging larger parts of
an instance. Finally, we would like to pair this approach with ongoing research
on singleton consistencies [46, 47], and implement adaptive reasoners where the580

level of consistency checking during search would be adjusted according to the
count of local models pertaining to a given constraint.
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Appendix A. Evaluation Figures
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Figure A.9: Insight into the 0.5th percentile of most difficult instances of Table 4 (and Table 1
by extention) for each strategy
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Figure A.10: Insight into the 0.5th percentile of most difficult instances of Table 5 (and Table 2
by extention) for each strategy

28


	Introduction
	Preliminaries
	A Dynamic Branching Approach
	A Selection Protocol for Heuristics
	Related Work
	Conclusion and Future Work
	Evaluation Figures

